University
Mohammed VI
Polytechnic

University Mohammed VI Polytechnic
Center for Doctoral Studies

Thesis submitted for the Degree of
Doctor of Philosophy
Science, Engineering and Technology

Specialty
Applied Crytography

Presented by
Abdelkarim KATI

Supervised by
Dr-Ing Tarik MOATAZ

In the Department

College Of Computing

Cryptanalysis of Encrypted Search Algorithms:

From Theory To Practice

Defended on XX/02/2024, with the presence of the following assessment committee:

Pr. Mustapha Hedabou,
Pr. David Cash,

Pr. Melek Onen,

Dr. Erik-Oliver Blass,

Pr. Guevara Noubir,
Dr-Ing. Brice Minaud,
Dr-Ing. Tarik Moataz,
Pr. Youssef Iraqi,

UM6P President

University of Chicago Referee

Eurecom Referee

Airbus Referee

Northeastern University Examinator

Ecole Normale Supérieure Guest Examinator

MongoDB Thesis Scientific- Director

UM6P Thesis Administrative- Director
2024 - 2025

L_bé\\\\\\\y//%// College of
””/77/;///!‘\\\\\%\\\ Computing

Cryptanalysis of
Encrypted Search Algorithms:
From Theory To Practice

College Of Computing
at Mohammed-VI Polytechnic University

Doctoral Thesis

submitted in fulfillment of the requirements for the degree of
Doctor of Engineering (Dr.-Ing.)

by

Abdelkarim Kati, M.Sc.
Advisor: Dr.-Ing. Tarik Moataz

Date of submission: 01.12.2023
Date of defense: 12.02.2024

Affidavit

I, the undersigned, hereby declare that the submitted Doctoral Thesis is my own work. I
have only used the sources indicated and have not made unauthorised use of services of a
third party. Where the work of others has been quoted or reproduced, the source is always
given.

I further declare that the dissertation presented here has not been submitted in the same or
similar form to any other institution for the purpose of obtaining an academic degree.

Ben-Guerir, 01.12.2023

Abdelkarim Kati, M.Sc.

Abstract

In recent years, there has been a consistent increase in the frequency of privacy violations
associated with the emergence of new technological solutions that involves the collection,
complex processing and storage of data. We believe that this privacy violation trend is due to
a multitude of factors such as data leaks and the lack of access control mechanisms. Within
this context, the European Union Agency for Cybersecurity (ENISA) and UK Information
Commissioner’s Office (ICO) have recently released a report on Data Protection Engineering
and a guidance on privacy-enhancing technologies (“PETs”) respectively, where regulators
recommend key methods in designing software and hardware solutions, processing operations
and achieving privacy or data protection functionalities that respect the rights and freedoms of
individuals or groups in relation to their personal data under legal requirements of Articles 25,
5, and 32 of the GDPR. In recent years, a lot of works has been done to design cryptographic
protocols that allow the processing of encrypted data. In particular, the servers managing the
data should not have access to the data in the clear. In this thesis, we focus specifically on
the problem of searching over encrypted data that was explicitly introduced by the works of
Song, Wagner and Perrig in 2000 [SWP0O].

We believe that a broad deployment of Encrypted Search Algorithms (ESAs) is a highly needed
step towards practical data security, this insures the privacy of individuals and reduces the risks
posed by existing deployable solutions. ESAs are constructions that allow the users to securely
search over encrypted outsourced data where the server never decrypts the data, this capability
comes with complex tradeoffs between efficiency, expressiveness, and security. After more
than two decades of research advances, ESAs constructions are becoming a practical reality,
with existing products such as MongoDBs queryable encryption (QE) [Mon23a; Mon23b],
a commercial product based on Structured Encryption (STE) that is able to run encrypted
queries on encrypted data. Amazon has also recently released AWS Database Encryption
SDK[Ama23], which provides record-level encryption on top of DynamoDB using some form
of property preserving encryption.

Concerning the security aspect, ESAs constructions are characterized by leakage profiles
modeling a set of leakage patterns , e.g., the query equality (or search) pattern, which reveals
whether and when an issued query is repeated. As a means to assess how exploitable each
profile can be under which assumptions, leakage attacks have been proposed, where the
attacks leverage a leakage pattern coupled with some auxiliary information to recover the
content of private data and or queries. Consequently, putting into question the security
guarantees of many encrypted search systems. However, the practical evaluation of leakage
attacks has, so far, been highly restricted and heavily reliant on assumptions about the users’
behavior and data. Therefore, the leakage attacks are either seen as demonstrating the
insecurity of an encrypted search (with a specific leakage profile) because there exists a
successful attack instance, or they are regarded as only of theoretical interest because the
few successful instances require assumptions that can be seen as unrealistic. It is not clear in
which cases leakage attacks do not work, as well as which specific properties of the system

II

influence their success, ergo, their actual impact on the security of encrypted search systems
remains open.

Concretely, based on existing limited evaluations, one can observe that the attacks’ per-
formance is highly depend on users’ behavior, e.g., query distribution or query selectivity.
Additionally, existing evaluations over artificial behavior have been confined to a handful of
datasets, while none of the prior works considered real-world user behavior. It remains an
open question how well attacks fare on completely different instances of real-world datasets.
Our goal in this thesis was to improve the community general understanding of leakage by
leveraging real-world query data in order to draw definite conclusions about the attacks
practical efficacy, since we could not simply ascertain whether a given leakage profile is ex-
ploitable in practice based solely on existing works. This is due to several reasons, including
but not limited to the lack of open-source implementations (which are needed to reproduce
results), conducting empirical evaluations on restricted datasets, and in some cases relying on
relatively strong assumptions which can significantly affect the accuracy. Furthermore, prior
works often leave out information about the parameters chosen during pre-processing phase
and only present a restricted number of results. This actively hides the effects of variables
on the recovery rates, and omits instances where the attacks do not work well. Therefore,
a comprehensive benchmarking study of the effects of leakage attacks is gravely needed in
order to bridge the existing gap of identifying the cases where the attacks are successful,
since their performance depends on the users’ behavior. We believe that by broaching this
subject we can lessen this gap, through an empirical evaluation conducted on a range of
representative real-world data under the same conditions.

In this thesis, we move towards addressing these limitations. First, we design and implement
LEAKER, an open-source framework that evaluates the major leakage attacks against any
dataset and that we hope will serve the community as a common way to evaluate leakage
attacks. We identify new real-world datasets that capture different use cases for ESAs and,
for the first time, include real-world user queries. Finally, we use LEAKER to systematically
evaluate known attacks on our datasets, uncovering sometimes unexpected properties that
increase or diminish accuracy. Our evaluation shows that some attacks work better on real-
world data than previously thought and that others perform worse. This part of the thesis
has lead to the following publication:

[KKM*22] S.KAMARA, A. Kat1, T. MOATAZ, T. SCHNEIDER, A. TREIBER, M. YONLI. “SoK: Cryptanaly-
sis of Encrypted Search with LEAKER - A framework for LEakage AttacK Evaluation
on Real-world data”. In: 7th IEEE European Symposium on Security and Privacy (Eu-
roS&P’22). Full version: https://ia.cr/2021/1035. Code: https://encrypto.de/
code/LEAKER. IEEE, 2022, pp. 90-108.

Additionally, we continue the study of query equality leakage on dependent queries and
present two new attacks in this setting which can work either as known-distribution or
known-sample attacks. They model query distributions as Markov processes and leverage
insights and techniques from stochastic processes and machine learning. We implement
our attacks and evaluate them on real-world query logs. Our experiments show that they
outperform the state-of-the-art in most settings but also have limitations in practical settings.
This part of the thesis has lead to the following publication:

III

https://ia.cr/2021/1035
https://encrypto.de/code/LEAKER
https://encrypto.de/code/LEAKER

[KKM*™24] S.KAMARA, A. KATI, T. MOATAZ, J. DEMARIA, A. PARK, A. TREIBER. “MAPLE: MArkov
Process Leakage attacks on Encrypted Search”. In: The 24th annual Privacy Enhanc-
ing Technologies Symposium (PETS). Full version: https://ia.cr/2023/810. Code:
https://github.com/anonymous- repo-submission/artifact. PETS, 2024, TBD.

Granted, many of the questions we have identified remain open as future challenges to be
tackled, but overall the contributions we have made throughout this thesis have nonetheless
improved our understanding of the impact and exploitability of leakage in a practical real-
world settings.

v

https://ia.cr/2023/810
https://github.com/anonymous-repo-submission/artifact

Résumé

Ces dernieres années, on observe une augmentation constante de la fréquence des violations
de la vie privée liées a 'émergence de nouvelles solutions technologiques impliquant la
collecte, le traitement complexe et le stockage des données. Nous croyons que cette tendance
aux violations de la confidentialité est due a une multitude de facteurs tels que les divulgation
de données et le manque de mécanismes de contrble d’acces. Dans ce contexte, ’Agence de
I'Union européenne pour la cybersécurité (ENISA) et I'Information Commissioner’s Office
(ICO) du Royaume-Uni ont récemment publié un rapport sur I'ingénierie de la protection des
données et un guide sur les technologies qui améliorant la confidentialité ("PETs"), respec-
tivement. Les régulateurs recommandent des méthodes clés pour concevoir des solutions
logicielles et matérielles, pour traiter des opérations et atteindre des fonctionnalités de protec-
tion des données privilegier qui respectant les droits et libertés des individus et des groupes
conformément aux exigences légales des articles 25, 5 et 32 du RGPD. Au cours des derniéres
années, de nombreux travaux ont été réalisés pour concevoir des protocoles cryptographiques
qui permettant le traitement de données chiffrées. En particulier, les serveurs gérant les
données ne devraient pas avoir accés aux données en clair. Dans cette theése, nous nous con-
centrons spécifiquement sur le probléme de la recherche sur des données chiffrées introduit
explicitement par les travaux de Song, Wagner et Perrig en 2000 [SWPO0O].

Nous pensons qu'un déploiement étendu des algorithmes de recherche chiffrée (ESAs) est
une étape fortement nécessaire vers la sécurité pratique des données, assurant la vie privée
des individus et réduisant les risques posés par les solutions déployables existantes. Les ESAs
sont des constructions permettant aux utilisateurs de rechercher de maniere sécurisée des
données chiffrées externalisées, ol le serveur ne déchiffre jamais les données. Cette capacité
s’accompagne de compromis complexes entre I'efficacité, 'expressivité et la sécurité. Apres
plus de deux décennies d’avancées dans la recherche, les constructions des ESAs deviennent
une réalité pratique, avec des produits existants tels que le chiffrement interrogeable (QE) de
MongoDB [Mon23a; Mon23b], un produit commercial basé sur le chiffrement structuré (STE)
capable d’exécuter des requétes chiffrées sur des données chiffrées. Amazon a également
récemment publié AWS Database Encryption SDK [Ama23], qui offre un chiffrement au
niveau de l'enregistrement sur DynamoDB en utilisant une forme de chiffrement préservant
les propriétés.

En ce qui concerne I'aspect sécurité, les constructions des ESAs sont caractérisées par des
profils de fuite modélisant un ensemble de motifs de fuite, par exemple, le motif d’égalité
de requéte (ou de recherche), qui révéle si et quand une requéte émise est répétée. Pour
évaluer dans quelles conditions chaque profil peut étre exploité, des attaques de fuite ont été
proposées, ot les attaques utilisent un motif de fuite couplé a des informations auxiliaires
pour récupérer le contenu de données privées et/ou de requétes, remettant ainsi en question
les garanties de sécurité de nombreux systemes de recherche chiffrée. Cependant, '’évaluation
pratique des attaques de fuite a, jusqu’a présent, été trés limitée et fortement dépendante
d’hypothéses sur le comportement et les données des utilisateurs. Par conséquent, les attaques
de fuite sont soit considérées comme démontrant 'insécurité d’une recherche chiffrée (avec

un profil de fuite spécifique) parce qu'’il existe une instance d’attaque réussie, soit elles sont
considérées comme relevant seulement d’un intérét théorique car les rares instances réussies
nécessitent des hypotheéses qui peuvent étre percues comme irréalistes. Il n’est pas clair
dans quels cas les attaques de fuite ne fonctionnent pas, ni quelles propriétés spécifiques du
systéme influent sur leur succes, par conséquent, leur impact réel sur la sécurité des systémes
de recherche chiffrée reste ouvert.

Concretement, a partir des évaluations limitées existantes, on peut observer que la perfor-
mance des attaques dépend fortement du comportement des utilisateurs, par exemple, la
distribution des requétes ou la sélectivité des requétes. De plus, les évaluations existantes
sur un comportement artificiel se limitent a quelques ensembles de données, tandis que
aucun des travaux antérieurs n’a pris en compte le comportement réel des utilisateurs. Il
reste une question ouverte de savoir comment les attaques fonctionnent sur des instances
complétement différentes de jeux de données du monde réel. Notre objectif dans cette these
était d’améliorer la compréhension générale de la communauté sur la fuite en tirant parti des
données de requétes du monde réel afin de tirer des conclusions définitives sur I'efficacité
pratique des attaques, étant donné que nous ne pouvions pas simplement déterminer si
un profil de fuite donné est exploitable en pratique uniquement sur la base des travaux
existants. Cela est d{i a plusieurs raisons, notamment le manque d’'implémentations open
source (nécessaires pour reproduire les résultats), la réalisation d’évaluations empiriques sur
des ensembles de données restreints, et dans certains cas, une dépendance a des hypotheses
relativement fortes qui peuvent affecter significativement la précision. En outre, les travaux
antérieurs laissent souvent de c6té des informations sur les parametres choisis lors de la
phase de prétraitement et ne présentent qu'un nombre restreint de résultats. Cela cache
activement les effets des variables sur les taux de récupération et omet les cas oli les attaques
ne fonctionnent pas bien. Par conséquent, une étude complete de référence sur les effets des
attaques de fuite est gravement nécessaire pour combler le fossé existant afin d’identifier les
cas ol les attaques réussissent, étant donné que leur performance dépend du comportement
des utilisateurs. Nous croyons qu’en abordant ce sujet, nous pouvons réduire ce fossé, grace
a une évaluation empirique sur une gamme de données du monde réel représentatives dans
les mémes conditions.

Dans cette theése, nous nous efforcons de résoudre ces limitations. Tout d’abord, nous
concevons et implémentons LEAKER, un framework open source qui évalue les principales
attaques de fuite contre n’importe quel ensemble de données et que nous espérons servira
a la communauté comme une maniere commune d’évaluer les attaques de fuite. Nous
identifions de nouveaux ensembles de données du monde réel qui capturent différents cas
d’utilisation pour les ESAs et, pour la premiére fois, incluent des requétes d’utilisateurs
du monde réel. Enfin, nous utilisons LEAKER pour évaluer systématiquement les attaques
connues sur nos ensembles de données, découvrant parfois des propriétés inattendues qui
augmentent ou diminuent la précision. Notre évaluation montre que certaines attaques
fonctionnent mieux sur des données du monde réel que précédemment pensé et que d’autres
sont moins performantes. Cette partie de la thése a conduit a la publication suivante :

VI

[KKM*22] S. KAMARA, A. KATI, T. MOATAZ, T. SCHNEIDER, A. TREIBER, M. YONLI. “SoK: Cryptanaly-
sis of Encrypted Search with LEAKER - A framework for LEakage AttacK Evaluation
on Real-world data”. In: 7th IEEE European Symposium on Security and Privacy (Eu-
roS&P’22). Full version: https://ia.cr/2021/1035. Code: https://encrypto.de/
code/LEAKER. IEEE, 2022, pp. 90-108.

De plus, nous poursuivons I'étude de la fuite d’égalité de requéte sur des requétes dépendantes
et présentons deux nouvelles attaques dans ce contexte qui peuvent fonctionner soit comme
des attaques de distribution connue, soit comme des attaques d’échantillonnage connu. Elles
modélisent les distributions de requétes comme des processus de Markov et tirent parti des
idées et des techniques des processus stochastiques et de I'apprentissage machine. Nous
implémentons nos attaques et les évaluons sur des journaux de requétes du monde réel. Nos
expériences montrent qu’elles surpassent I’état de I'art dans la plupart des configurations
mais ont aussi des limitations dans des situations pratiques. Cette partie de la these a conduit
a la publication suivante :

[KKM*24] S. KAMARA, A. KATI, T. MOATAZ, J. DEMARIA, A. PARK, A. TREIBER. “MAPLE: MArkov
Process Leakage attacks on Encrypted Search”. In: The 24th annual Privacy Enhanc-
ing Technologies Symposium (PETS). Full version: https://ia.cr/2023/810. Code:
https://github.com/anonymous- repo-submission/artifact. PETS, 2024, TBD.

Certes, bon nombre des questions que nous avons identifiées restent ouvertes en tant que défis
futurs a relever, mais dans I’ensemble, les contributions que nous avons apportées tout au long
de cette theése ont néanmoins amélioré notre compréhension de I'impact et de 'exploitabilité
des fuites dans un contexte pratique du monde réel.

VII

https://ia.cr/2021/1035
https://encrypto.de/code/LEAKER
https://encrypto.de/code/LEAKER
https://ia.cr/2023/810
https://github.com/anonymous-repo-submission/artifact

Acknowledgments

VIII

Contents

Abstract

Résumé

Acknowledgments

Contents

1

Introduction

1.1 Encrypted Search Algorithms (ESAs)

1.2 Encrypted Search Algorithms (ESAs) Cryptanalysis

1.3 Limitations v v v v e e e e e e e e e e e e e e
1.4 Thesis Outline & Contributions

Related Work
Preliminaries

LEAKER

4.1 Existing Leakage Attacks
4.2 The LEAKER Framework
4.3 Data Collections & QueryLogs
4.4 Empirical Evaluation

MAPLE

5.1 Stochastic Processes
5.2 Statistical Inference Attacks
5.3 From Distributions to Samples
5.4 Empirical Evaluation

Conclusion and Future Work

6.1 Summary e
6.2 Discussion & Guidlines
6.3 Futuredirections

Appendices

7.1 LEAKER Additional Empirical Evaluations

IX

Vil

AN UT W W =

11

14

........... 14
........... 21
........... 24
........... 28

46

........... 47
........... 49
........... 58
........... 60

71

........... 71
........... 73
........... 75

76

Contents

7.2 LEAKER Additional Datattt 79
7.3 LEAKER Code Snippetottt it 87
7.4 MarkovModels 88
7.5 Markov Algorithms 89
7.6 Markov Additional Empirical Evaluations 90
Bibliography 24
Lists 104

1 Introduction

As we look back on the past two decades, the data landscape has been expanding at an un-
precedented rate, making the digitization of information nearly ubiquitous. Thus, individuals
and enterprises have been projected to create, capture, replicate, and consume an estimated
180 zettabytes of data annually with a compound annual growth rate (CAGR) of 21.2% by
2026 [IDC23], Where almost all this data will be stored in the cloud.

Public cloud service providers play a pivotal role by providing an infrastructure that grants
businesses and individuals access to computational power and storage space under a flexible
pay-as-you-go model, thereby circumventing the substantial costs associated with establish-
ing and maintaining proprietary data centers, which includes hardware, construction, air
conditioning, and security expenditures. This renders cloud computing an economically
viable solution for both extensive bulk data processing and storage needs, thus offering faster
innovation, flexible resources and capitalizes on economies of scale.

As organizations started moving their workloads off-premise, a massive shift towards remote
work adoption changed the nature of how organizations work. This mass cloud adoption
has been notably expedited by the global pandemic, which compelled companies to provide
employees with access to business systems from anywhere. Yet, it left them grapple with the
challenges of managing an ever-expanding pool of security vulnerabilities and the escalating
complexity inherent in multi-cloud environments. The scarcity of proficient cybersecurity
personnel exacerbates this predicament.

Research by the UK cyber resilience and data breaches survey relating to digital data in
2023 [Nat23] has shown that cyber security breaches and attacks remain a common threat,
where 32% of businesses and 24% of charities overall identified any breaches or attacks from
the last 12 months (a decrease from 39% of businesses and 30% of charities the previous
year. The drop is mainly driven by smaller organisations). The number is much higher for
medium and large businesses, 59% and 69% respectively, also and high-income charities with
£500,000 or more in annual income, 56%, suffered at least one data breach. It is essential to
note that the risk landscape in the cloud differs from that in an on-premises environment.
As the reliance on cloud services intensifies, it becomes imperative to address the unique
security considerations posed by cloud storage, acknowledging the distinct challenges that
arise in this dynamic and interconnected digital ecosystem.

Meanwhile, the constant occurrences of data breaches have demonstrated the clear need for
data encryption which serves as a crucial measure for safeguarding the confidentiality of data
being collected and managed, especially customer sensitive information like electronic health

1 Introduction

record or financial records. This protective strategy addresses both data in transit and data at
rest across various devices and user interactions. Hence, complying with data privacy and
protection regulations, including standards like FIPS (Federal Information Processing Stan-
dards) and HIPPA (Health Insurance Portability and Accountability Act of 1996) mandating
organizations to encrypt sensitive customer data to comply with legal requirements.

The adoption of cloud encryption not only fortifies security measures but also ensures compli-
ance with regulations, maintains data integrity, and mitigates the risks associated with data
breaches. While encryption using standard cryptographic primitives provides data security in
transit and or at rest, which would prevent information leakage in the event of a compromise,
this trivial solution neither scale nor ensure the security of data at its most valuable state:
namely, as it is being used. The reason is that standard cryptographic primitives hinders the
users’ computational and search capabilities over encrypted data. Compiling the user to either
downloading all the content to its locally (trusted) environment, which defies the purpose
of outsourcing the data, or alternatively entrusting the third party service provider with the
key to decrypt all data. However, this approach, while used by a plethora of cloud providers
such as Amazon S3 [Ama23], discloses the content of both data and queries. Therefore, it
is important to ensure the confidentiality of both of the data and queries when outsourcing
sensitive data to the cloud.

With the advent of privacy-sensitive applications, the ability to cryptographically separates the
roles of providing, administering, and accessing data has become of the utmost importance,
in order to ensure the confidentiality of both of outsourced data and queries. Therefore,
technical means allowing digital services while preventing the privacy erosion are often
referred to as Privacy-Enhancing Technologies (PETs). PETs surveyed in [HZNF15], are a
very wide class of techniques to computing over encrypted data, including but not limited
to anonymous communication, statistical methods such as differential privacy [DR*14],
obfuscation, anonymization, private federated learning, homomorphic encryption and multi-
party computation.

The concept of Encrypted Search (ES) realizes various privacy and security goals and provides
a promising solution to this problem by using different cryptographic primitives allowing the
outsourcing of encrypted data whilst maintaining search capabilities , i.e., the authorised
client process of encrypted data without revealing the data in the clear to the server. However,
most existing constructions achieve practicality at the cost of leaking some information to
the server. The information varies depending on the expressiveness, the scheme, the threat
model; but tends to be statistical in nature. As an instance a scheme can leak if and when
the same encrypted query has been issued by the client. In order to find out what can be
learned from leaked information we provide, in this thesis, a detailed empirical cryptanalysis
of Encrypted Search Algorithms (ESAs) in the semi-honest security model, also known as
honest-but-curious adversarial model, where the untrusted party (server) may attempt to
learn additional information from the exchanged data to gain insights into the confidential
information.

1 Introduction

1.1 Encrypted Search Algorithms (ESAs)

Encrypted search algorithms (ESAs) enable the users to privately search over their outsourced
encrypted data. ESAs have received a lot of attention due to applications to cloud storage
and database security (see the survey by Fuller et al. [FVY*17] for an overview). At a high
level, ESAs consist of two algorithms: a setup algorithm that encrypts a data collection (or a
database) and encrypts it with a returned secret key sk. This encrypted collection will be then
outsourced to a remote server. And a search/query algorithm that uses the secret key sk
and a users query g to retrieve all the matching entries from the server q(C) = {e € C : g(e)}.
Dynamic ESAs also have an update algorithm to add or remove data.

Provably secure ESAs can be constructed from a various, sometimes intersecting cryptographic
primitives: property-preserving encryption (PPE) [AKSX04; BBOO07], fully-homomorphic
encryption (FHE) [Gen09], searchable/structured symmetric encryption (SSE/STE) [SWP0O;
Goh03; CMO05; CGKOO06; CK10], functional encryption [BSW11], private set intersec-
tion (PSI) [HEK12; PSTY19], private information retrieval (PIR) [CGKS95], or oblivious RAM
ORAM [GO96] (see below). A standard structured encryption (STE) can also be viewed as
an instance of structured encryption (STE) for keyword search, though STE can encompass
other query types as well as other structures than search structures. In this work we focus
on ESAs realized via SSE/STE techniques that we refer to as structured ESAs.

Efficiency. ESA constructions achieve varying trade-offs between expressiveness, efficiency,
and security and the latter is mainly characterized by well-defined leakage patterns like, for
example, the query equality pattern, which leaks if and when queries are repeated. When
evaluating the efficiency of an ESA, we usually focus on the query or search time; that is the
time needed to search over the encrypted data. ESAs based on (FHE) or secure multi-party
computation (SMPC) are leakage free, but require at least linear time search complexity in
the size of the data so they are usually considered impractical. Search based on functional
encryption [BSW11] also has linear complexity. For practical purposes, one needs sub-linear
ESAs which can be achieved with (ORAM) in opt-logo(l) n time. On the other hand, structured
and property-preserving ESAs, based Searchable Symmetric Encryption (SSE) or Structured
Encryption (STE) respectively, which can achieve opt search time, where opt is the optimal
time to search and n is the number of items in the data collection.

1.2 ESAs Cryptanalysis

Well-defined leakage patterns are useful to describe leakage but do not tell us whether the
leakage can be exploited or not in practice. This is typically addressed by designing leakage
attacks which use the observed leakage usually with some auxiliary information to try and
recover information about queries and/or data (we refer the reader to [KKM*22] for a survey
of ESAs cryptanalysis). Leakage attacks and their evaluations cover a lot of different settings,

1 Introduction

scenarios, and leakage patterns and make a variety of assumptions. Known-data attacks
assume the attacker has access to some of the client data while sampled-data attacks assume
the attacker has access to a sample taken from a distribution that is close to the distribution
of the client’s data. Most attacks are passive (i.e., they do not interact with the system) and
persistent (i.e., they can observe the interaction between client and server). In most empirical
evaluations of leakage attacks, client queries are sampled from various artificial distributions
but [KKM*22] recently showed that using real-world query data in the form of query logs
can often lead to very different accuracy results.

Adversarial models and leakage. ESAs can be analyzed in different adversarial models.
The most common are the snapshot and persistent models. A snapshot adversary receives a
copy of the encrypted data at various times and tries to recover information about the data
collection. A persistent adversary receives the encrypted data and a transcript of the query
operations and tries to recover information about the data collection and the queries. The
information an adversary can recover about the data or queries is referred to as leakage and,
ideally, one would prefer a zero-leakage solution, which can be achieved in several ways. In
the snapshot model, it is possible to design very efficient zero-leakage ESAs using structured
encryption [AKM19], whereas in the persistent model zero-leakage ESAs can be designed
using FHE at the cost of linear-time queries. In the persistent model oblivious, structured,
and property-preserving ESAs all leak some information; though recent work has shown
how to suppress some of this leakage for certain encrypted data structures [KMO18; KM19;
PPYY19; APP*21; GKM21]. For instance, prominent leakage profiles include the response
identity (or access) pattern, which reveals the response to a query, or the query equality (or
search) pattern, which reveals whether and when a query repeats.

Leakage attacks. Because sub-linear solutions leak information, cryptanalysis plays an
important role in the area of encrypted search. By designing leakage attacks one can try
to ascertain whether a leakage profile is exploitable. Starting with the work of Islam et
al. [IKK12], leakage attacks were first designed against structured ESAs in the persistent
model. Later, Naveed et al. [NKW15] designed attacks against PPE in the snapshot model and
Kellaris et al. [KKNO16] showed attacks against oblivious ESAs in the persistent model.

These works were improved by a series of papers [CGPR15; GLMP18; LMP18; GLMP19;
GJW19; BKM20; KPT20; KPT21; OK21; RPH21]. While the attacks improve our under-
standing of leakage, it can sometimes be difficult to draw definite conclusions about their
performance in practical settings. This is due to several limitations: (1) none of the imple-
mentations are open-source (with the exception of [RPH21]) which makes it burdensome to
reproduce results, especially in new empirical settings; (2) most of the prior evaluations are
based on a few and often small datasets without real query logs; (3) some attacks and/or their
evaluations are based on assumptions which may or may not be realistic, depending on the
application scenario. We stress that some of these limitations are due to the fact that obtaining
real-world query logs is very challenging. In fact, this has been recognized as an important

1 Introduction

impediment to the evaluation of attacks for some time [GJW19; RPH21]. A consequence of
this is that prior evaluations vary greatly in what assumptions they make about queries, e.g.,
some evaluations of keyword attacks use the most frequent keywords [IKK12; CGPR15] while
others use the least frequent keywords [BKM20; RPH21], a choice that can significantly affect
results.

1.3 Limitations

Dependent queries. Most leakage attacks assume that queries are independent but, in
practice, this may not be the case. For example, after querying for a certain disease, a user
may query for a corresponding medication or when querying for the city of “New York” a
client may be more likely to also query for the state of “New York”. Leakage attacks in the
dependent setting was recently considered for the first time by Oya and Kerschbaum [OK22].
Here, it is assumed that client queries are sampled from a Markov process, meaning that a
query depends only on the previous query. At a very high level, their attack, called IHOB
solves an optimization problem whose costs are set using the number of transitions between
queries observed via the query equality pattern and the number of expected transitions
between keywords given by some auxiliary information. The evaluation of the attack does
not use query logs but, instead, relies on Wikipedia data. More precisely, it uses the transition
probabilities between different Wikipedia pages as a stand-in for the transition probabilities
between keywords/queries. The result is that the evaluation of [OK22] essentially studies the
[HOP attack in a setting where client queries are Wikipedia pages (rather than their content)
and the query distribution corresponds to the Wikipedia graph.

Standardization. While the implications of leakage attacks remain ambiguous, efforts to
deploy ESAs are continuing to move forward. For example, NIST’s recent standardization
intentions of privacy-preserving technologies include, among others, ESAs and call for refer-
ence material and security analyses [NIS21]. Thus, a common attack evaluation framework
and more realistic evaluations are paramount to enable a widespread, secure use of ESAs
and their standardization.

Vulnerability vs. risk. The above problem stems from a lack of data and knowledge
about how clients use search algorithms. As a result, attacks are regarded as demonstrating
a potential ESA vulnerability, but it is unsurprising that research is in disagreement over
the risk, i.e., the practical impact of cryptanalysis via leakage attacks. This can be observed
by the way new works portray risk: ESA constructions typically argue low risk, stating that
attacks require assumptions deemed unrealistic, whereas attack or leakage mitigation papers
present an attack instance as a considerable violation of privacy guarantees.

1 Introduction

1.4 Thesis Outline & Contributions

Contributions. This thesis has two main contributions.

The first goal is to broaden the scope of ESA cryptanalysis [KKM*22]. Since how well
leakage attacks fare on completely different instances of real-world datasets remained an
open question, an empirical evaluation of the effects of leakage on a range of representative
real-world data under the same conditions was necessary to identify the use cases in which
the attacks are successful.

The second goal is to continue the study of query equality leakage in the dependent setting as
initiated by [OK22] and we focus on STE/SSE-based ESAs [KKM'24]. This is an important
leakage pattern to study because it is very common; i.e., most practical constructions reveal it
[SWP00; Goh03; CM05; CGKO06; BBO07; CK10; KPR12; CJJ*13; KP13; CJJ*14; Bos16].

We accomplish these goals with the following contributions:

1. In Chapter 4, we designed and implemented an open-source Python framework called
LEAKER that evaluates the major leakage attacks against keyword and range (oblivious
or structured) ESAs on arbitrary datasets. It is intended as an easy-to-use reference tool
for research on leakage attacks and mitigations. With LEAKER we enable and invite the
community to contribute additional attacks and evaluations to continually advance our
understanding of leakage. We also identify a wide set of real-world datasets that capture
different realistic use cases for ESAs and, for the first time, include real user queries (query
logs), which has long been a well-known challenge in the field. For keyword search,
this includes search engine and genetic data. For range search, this includes scientific,
medical, human resources, sales, and insurance data. The datasets we consider cover
significantly more settings than those used in previous work and can serve the community
for future benchmarks. Finally, we use LEAKER to systematically evaluate attacks on
oblivious and structured ESAs on real-world data. Our analysis is an important step
towards understanding the practicality of many well-known leakage attacks and provides
some new insights which were not obtained by previous evaluations. For example, we
find that the BKM attacks! of Blackstone et al. [BKM20] can achieve higher recovery
rates than previously reported when evaluated with real query logs. On the other hand,
the recovery rates of the IKK attack of Islam et al. [IKK12] and of the COUNT attacks of
Cash et al. [CGPR15] were lower on our datasets. Similarly, the recovery rates of many
well-known range attacks were lower on our real-world query logs and data collections.
However, when using synthetic query distributions based on statistics from our query
logs, the recovery rates improved enough to be considered practical. Particularly, we
deem keyword ESAs leaking response identifiers or volume patterns at risk, as relevant
attacks can uncover significant information with knowledge as little as 5% of the original
database even for small-scale, private instances. We find that attacks exploiting total
volume information are ineffective for a partial knowledge < 80%. In the case where

!Throughout, we denote attacks by first letter of author names.

1 Introduction

wide ranges are covered by range queries, we consider attacks harmful since they can
uncover significant information in such settings using response identifier leakage. If query
equality and the order of the database entries are also leaked, we observe significant
real-world risk. However,we would like to note that the order is not a common leakage
pattern for structured and oblivious ESAs. Range attacks exploiting response lengths are
not successful at all. We discuss the implications of this in Chapter 6.

2. In Chapter 5, we introduce a new framework based on hidden Markov models (HMM) to
model client queries and query equality leakage. We use our framework to design two new
passive and persistent query-recovery attacks, called Stationary and Decoder, that work in
either the known- or sampled-data setting against dependent queries (i.e., the same setting
as IHOP). While Stationary serves as a warmup attack, its underlying stochastic techniques
are fundamental to the design of the Decoder attack. Moreover, we can instantiate Decoder
with multiple variants, resulting in two attacks we call Decoder-N and Decoder-B. We
implement our attacks as well as the IHOP attack in the open-source framework LEAKER
[KKM"22] and conduct a broad evaluation of all three attacks on both real-world and
synthetic data. More precisely, we use the AOL [PCT06] and TAIR [ECW™*14] query logs
as our dependent queries. Furthermore, we use a variety of synthetic distributions to
determine the cases for which the attacks work and do not work. We summarize our
results in Table 4.1 where one can see that our attacks significantly outperform IHOP
on the TAIR dataset and most artificial distributions. But, in general, we found that the
attacks only work well when: (1) the auxiliary sequence includes the client’s exact query
sequence; and (2) the client’s query distribution is sparse in the sense that, for every
keyword, the set of keywords to transition to is small.

Organization. The reminder of this thesis is organised as follows. In Chapter 2, we review
prior and subsequent works on encrypted search and leakage-based attacks in order to provide
context to our results. In Chapter 3, we formally define searchable symmetric encryption (SSE)
schemes, adversarial models and scenarios. Then we summarize the leakage profiles and
auxiliary data collections used throughout our empirical evaluations.In Chapter 4, we present
the design, implementation details and the evaluation results for our LEAKER framework
given real-world datasets. In Chapter 5, we introduce our statistical inference attacks, extend
LEAKER and evaluate them against the state-of-the-art query recovery attacks in the dependent
setting. Finally, in Chapter 6, we conclude the thesis, provide some guidance on how to
interpret our results and discuss security, limitations and give outlooks for remaining open
questions and future research directions.

2 Related Work

In the following, we review prior and subsequent works on encrypted search and leakage
attacks in order to provide context to our results.

Encrypted search algorithms (ESAs). Encrypted Search Algorithms (ESAs) refer to any
cryptographic primitive/protocol that allows one to execute search algorithms on encrypted
data.

The first explicit ESAs construction for exact keyword search was proposed by Song, Wagner
and Perrig [SWPO00], though previous work by Goldreich and Ostrovsky on ORAM [GO96]
could also be used. Boneh et al. [BDOP04] then considered the problem of public-key
searchable encryption. Searchable symmetric encryption (SSE) definitions were given by
Goh [Goh03] and Chang and Mitzenmacher [CMO5] but the notion of adaptive semantic secu-
rity for SSE was proposed by Curtmola, Garay, Kamara and Ostrovsky [CGKO06]. [CGKOO06]
also first formalized leakage and presented the first sub-linear and optimal-time constructions.
Index-based SSE constructions were later generalized as structured encryption (STE) by Chase
and Kamara [CK10]. STE (referred to as structure-only STE in [CK10]) can be used to design
sub-linear SSE schemes (i.e., schemes that support private keyword search over encrypted
document collections) but has additional applications beyond SSE including various kinds of
encrypted databases [KMO18; AAKM20; KMZZ20; KMPQ21; ZKMZ21].

ESAs can be built using a variety of techniques including property-preserving encryption

(PPE) [AKSX04; BBOO07], oblivious RAMs (ORAM) [GO96], secure multi-party computation
(MPC) [Yao82; GMW87], fully-homomorphic encryption (FHE) [Gen09], and functional
encryption (FE) [BSW11]. Fuller et al. [FVY'17] provide a survey on ESAs.

In this work [KKM*22] we refer to ESAs built from ORAM as oblivious ESAs and to ESAs
built from SSE/STE as structured ESAs. Note, however, that the line between these notions
is blurry as one can also view ORAM as a (low-leakage) structured encryption scheme for
arrays [KMO18].

Oblivious RAM (Oblivious RAM (ORAM)). Oblivious RAM is a cryptographic primitive in-
troduced by Goldreich and Ostrovsky in [GO96], in which the authors designed a shuffling
and data re-encrypting scheme to conceal the access patterns of a user interacting with a
RAM-based storage system. ORAM ensures that an observer cannot discern which specific
memory locations are being accessed. Many schemes were developed, which could roughly be

2 Related Work

classified into either: hierarchical/square root ORAM[GO96] or tree-based ORAM[SDS*13],
with subsequent works such as multiple-server ORAM [LO13; SS13], or use of some server
computational power [WS12; DDF"16; GMP16].

Leakage attacks. To start, we'll give a brief overview and categorize the existing leakage
attack. Following that, we will present prior SOKs on leakage cryptanalysis with an emphasis
on query recovery attacks. To conclude, we’ll delve into more recent works conducted within
the field based on statistical inference. Sublinear ESAs constructions (e.g., based on ORAM
and SSE/STE) leak well-defined information. To ascertain how exploitable this information
is, leakage attacks try to recover information about queries and/or data using the leakage and,
sometimes, auxiliary information. Leakage attacks can be classified along several dimensions.
The target includes either queries, in which case it is a query-recovery attack; or data, in
which case it is a data-recovery attack. The adversarial model includes: the snapshot model,
where the attacker obtains snapshots of the encrypted data; or the persistent model, where
the attacker obtains the encrypted data and any interaction between the client and server.
The attack’s auxiliary information can include: known-data, where the adversary receives a
subset of the client’s plaintext data; sampled-data, where the adversary receives a sample
from a distribution that is close to client’s query and/or data distribution. The attack target
can be query reconstruction, which is usually the case for attacks in the keyword setting, or
data reconstruction, which is usually the case for attacks in the range setting. Finally, attacks
can be passive or active in which case the adversary can inject data and/or queries.

The first leakage attack was given by Islam et al. [IKK12] and was a passive query-recovery
attack in the persistent model against co-occurrence leakage pattern (see paragraph 3 of
Chapter 3) and required sampled-data as auxiliary information; though later evaluations
found that, to achieve reasonable recovery rates it needs known-data as auxiliary information
[CGPR15]. Additional sampled-data attacks [LZWT14; DHP21; GPP21; OK21; OK22] and
known-data attacks [CGPR15; BKM20; NHP*21; RPH21] were later proposed against a
variety of leakage patterns and under a variety of assumptions. There are also a large number
of leakage attacks that target range search specifically [KKNO16; GLMP19; KPT21] under
various assumptions. A few recent works have proposed theoretical frameworks to quantify
leakage in ESAs constructions [WP17; GLMP19; JS19; JPS21; KMPP22]. Very recently,
Kornaropoulos et al. [KMPP22] and Kamara and Moataz [KM23] provided more theoretical
methods for quantifying leakage in encrypted search. With the exception of [OK22], all the
attacks above assumed queries are independent.

File-injection attacks are active attacks that were proposed by Zhang, Papamanthou and Katz
[ZKP16] as well as in [BKM20; PWLP20], attacks on k-NN queries by [KPT19; KPT20], and
snapshot attacks on PPE-based ESAs were given by Naveed et al. [NKW15]. Leakage attacks
in the persistent range setting were first proposed by [KKNO16] using the response identity
or response length patterns (see paragraph 3 of Chapter 3) various atatcks improved on
the existing results [GLMP18; LMP18; GLMP19; GJW19; MT19; FMA*20; KPT20; KPT21;
MFST21]. As countermeasures, techniques to completely suppress different leakage patterns

2 Related Work

are considered by [KMO18; KM19; PPYY19; APP*21; GKM21] and techniques to heuristically
lower attack efficacy are given by [CLRZ18; PPYY19; GKL*20; SOPK21].

Other SoKs. Fuller et al. [FVY"17] provide a survey of ESAs which also contains an overview
of some leakage attacks and Yao et al. [YZGW20] provide a survey of other leakage at-
tacks,largely focusing on property-preserving encryption. While both works largely focus on
PPE leakage attacks, our work[KKM*22] mainly focuses on leakage attacks against searchable
symmetric encryption (SSE), structured encryption (STE), and oblivious RAM (ORAM) in
addition to providing a new software framework and datasets to evaluate these attacks.

Query log analysis. Researchers across different fields have tried to better understand
users’ querying behavior. This is known as query log analysis, and is surveyed in [Jan06; JS06;
JPL13]. Many works analyze query logs gathered by (proprietary) systems that only the
authors had access to, such as libraries [JCMBO0O], web searches [JS06], blog searches [MDO06],
people searches [WBK*11], and data portal searches [KKI"17]. Unfortunately, almost none
of these works had data we felt was appropriate to evaluate leakage attacks. We also reached
out to multiple services for relevant statistics, but none were willing to provide us with even
basic information. As no information relevant to leakage attacks was available, we thus
identified novel, real-world query data sources (cf. Section 4.3) and performed our own
analyses of leakage attacks on them (cf. Section 4.4).

10

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}", and the set of all
finite binary strings as {0,1}*. [n] is the set of integers {1,...,n}, with 2[" its power set, and
with [s|, the bit length of a string s. We write x « y to represent an element x being sampled

from a distribution y, and x & X to represent an element x being sampled uniformly at
random from a set X. The output x of an algorithm A is denoted by x < A. Given a sequence
q of n elements, we refer to its ith element as q; or q[i]. If S is a set then #S refers to its
cardinality. k will denote the security parameter.

Searchable symmetric encryption (SSE). SSE schemes are cryptographic schemes that
allow a client to outsource an encrypted document collection D to a server while supporting
for private keyword search on it. Sub-linear and optimal-time SSE schemes can be constructed
using standard symmetric encryption and a multi-map encryption scheme. The latter is a
type of STE scheme that encrypts multi-map data structures in such a way that they can
be privately queried. More precisely, a static and structured or index-based SSE scheme
SSE = (Setup, Search) consists of two efficient algorithms. Setup takes as input a security
parameter 1% and a data collection D = (D, ...,D,,) of documents over a space I and outputs
a secret key K and an encrypted document collection (EMM, cty,...,ct,), where EMM is an
encrypted multi-map produced by the underlying multi-map encryption scheme and ct;, for
i € [n], are standard encryptions of the documents. Search is a two-party protocol between
a client and a server. The client inputs its secret key K and a keyword w of the keyword (or
query) space W and the server inputs an encrypted collection (EMM, cty,...,ct,). The client
receives a set of encrypted documents {ct; };ciqs() and the server receives L.

Data collections C.

* Document collection D: A data collection over a keyword space W is a sequence of
documents (D, ...,D,), each of which is a set D; C W. Given a keyword w € Q from a
query space Q € W, a keyword search returns the documents that contain w which we
denote as D(w) = {D € D : w € D}. The function ids : W — 2["] takes a keyword as
input and returns the identifiers of the documents in D(w). The frequency of a keyword
w is the number of entries that contain w.

* Numerical collection N: A data collection over the universe [N] is a (multi) sequence
of positive integers (es,...,e,), each of which is an integer e; € [N]. The density of a

11

3 Preliminaries

numerical collection N is defined as 6(N) = #{e € N}/N; i.e., the number of unique
values in N over the universe size. We will sometimes also consider the histogram
of a numerical collection »(N) = (#{e €EN:e= v})ve[N]. Given a range r = (a, b),
where a,b € [N] and a < b, a range query returns N(r) = {e€N:a < e < b}. We
overload the function ids : [N] x [N] — 2["] which takes a range as input and returns
the identifiers of the elements that are within the range r = (a, b). The width of a range
query r = (a, b) is the value b —a + 1.

Leakage. Every operation of an SSE construction is associated with leakage which can be
itself composed of many leakage patterns. We call the composition of all of these leakage
patterns a leakage profile. In particular, for static structured Encrypted Search Algorithms
(ESAs), we differentiate between the setup leakage, £, which is the information revealed
to the server at setup time, and the query leakage, £,, which is the information revealed to
the server at query time. Leakage patterns are families of functions with different spaces
associated to the underlying data collection. We denote a (document or numerical) collection
of data entries as C, which is a sequence of length n of data. A query sequence qq,...,q,,
where each q; is either a keyword or a range query issued by a user. We recall the most
commonly exploited leakage patterns of Encrypted Search Algorithms (ESAs) as defined in
[BKM20]:

* The response identity pattern rid (or access pattern) reveals the identifiers: rid(C,qy,...,q,) =

(ids(ql), eee, ids(qt)).

* The query equality pattern geq (or search pattern) reveals if and when queries are equal:
9eqa(C,qs,.--,q,) = M €{0,1}"**, where M[i, j] = 1 iff ¢; = q;.

* The response length pattern rlen leaks the number of matching entries: rlen (C, qis---» qt) =

(lids(qy)l; - ., lids(go)I).

* The co-occurrence pattern co leaks how often keywords co-occur within the same document:
co (D,wl, . ..,Wt) =M € [n]"*, where M[i, j] = |ids(w;) Nids(w;)|. This information is
implied by rid and implies rlen.

* The volume pattern vol leaks the bit length of matching entries: vol(C,qy,...,q,) =
((|e|b)e€C(Q1) 2 (|e|b)ee(}(q[))'
* The total volume pattern tvol leaks the total bit length of matching entries: tvol (C,qy,...,q,) =

(Zeec((h) |e|b’ T Zeec(qt) |e|b)-

* The order pattern order leaks the order of elements (id(e))e csorted(C)

* The rank pattern rank leaks the number of entries smaller than value v. (# {eeC:e<v})

12

3 Preliminaries

The order and rank patterns require an order relation on the plaintext space and are mostly
related to numerical data collections. For a more detailed discussion on leakage patterns we
refer the reader to [KMO18].

In Chapter 5 we mainly focus on constructions that have the following leakage profile:

A= (Es,ﬁq) = (*, (qeq, *))

where refers to any arbitrary collection of leakage patterns. Note that most structured
SSE schemes in literature have A as their leakage profile [CGKO06; CK10; CJJ*13; CJJ*14;
BMO17; GPPJ18; KM19; PPYY19; Bos16]. This is true for all property-preserving encrypted
search algorithms as well [BBOO7; ARZB11]. This illustrates the importance of studying the
query equality pattern. Hence, in (Sections 5.2.1, 5.2.2) we present our geg-attacks that are
applicable to all these constructions.

Adversarial models and security. There are different adversarial models that we usually
consider in the encrypted search area. The most common adversaries are persistent and
snapshot adversaries. The former receives the encrypted data as well as the transcripts of
all query executions. The latter is weaker and only receives the encrypted data after the
execution of every query. In this paper we consider that the adversary is persistent. Security
definitions are parametrized by a leakage profile. In particular, leakage-parametrized security
definitions were introduced by Curtmola et al. [CGKO06] and capture the following: given
a leakage profile A, we say that an SSE scheme is A—secure, if a persistent (or a snapshot)
adversary cannot learn more information than what is captured by the leakage profile, A. For
formal definitions, we refer the reader to [CGKO06; CK10; AKM19].

Security definitions. The security of ESAs can be formalized using “leakage-parameterized"
definitions following [CGKO06; CK10]. In this framework, a construction is proven secure
with respect to a security definition that is parameterized with a specific leakage profile.
Leakage-parameterized definitions for persistent adversaries were given in [CGKO06; CK10]
and for snapshot adversaries in [AKM19]. ! We recall these definitions here informally and
refer the reader to [CGKO06; CK10; AKM19] for the formal definitions.

Types of attacks. In our works, we only consider passive attacks where the adversary does
not get to choose the data or the queries. Moreover, we solely focus on query recovery attacks
where the adversary has either access to: (1) the exact query distribution of the client or,
(2) a sample of the queries. We will refer to the former as known distribution attacks and
to the latter as known sample attacks. Note that while knowing the exact distribution is a
very strong assumption, it helps us nonetheless to understand what can be achieved in such
a setting.

'Even though parameterized definitions were introduced in the context of SSE and STE, they can be (and
have been) applied to other primitives, including to FHE-, PPE-, ORAM- and FE-based solutions.

13

4 LEAKER

With respect to the cryptanalysis of Encrypted Search Algorithms (ESAs), it is hard to evaluate
the effectiveness of leakage attacks, since the majority of attack implementations are close-
sourced. Research and practice in encrypted search was hindered as it is harder to verify
claims (reproduce results) or evaluate attacks in environments other than the ones chosen
by the original authors. This is reflected by the fact that, until now, barely any comparative
evaluations were performed (the sole direct comparison exists only between COUNTV2 and IKK
in [CGPR15]) and [LZWT14; PW16; OK21] in [OK21]. Coupled with the fact that leakage
attacks are evaluated mainly on datasets without query logs, i.e., no real-world queries,
leaving open the question of efficacy under increased real-world conditions.

Thus, for continuously developing a better understanding of the risk of ESAs leakage and
contributing to standardization efforts [NIS21], we designed and implemented our frame-
work called LEAKER with the goal of accessible and effortless leakage attack evaluation.
With LEAKER, researchers can easily integrate new attacks and compare them to the state of
the art or investigate the effect of countermeasures. Further possible users are researchers
with access to proprietary query data, services interested in an assessment of their encrypted
systems’ vulnerabilities, and individuals keen on learning what a service might infer from
their past queries.

4.1 Existing Leakage Attacks

Leakage attacks were first considered by Islam et al. [IKK12], who proposed the IKK attack
which exploits co and knowledge of some fraction of user queries to recover the remaining
queries. Naveed et al. [NKW15] then proposed inference attacks against PPE and Cash et
al. [CGPR15] improved over IKK with their COUNT attack. What followed was a breadth of
new attacks considering a greatly expanded set of settings, assumptions, and adversaries.
In the following, we will categorize leakage attacks and present these existing works. We
identify two main attack families, which we have already discussed in Chapter 3: keyword
attacks for keyword ESAs, and range attacks for numerical ESAs. The objectives are to
uncover information about the queries and/or the database. Note that basic comparisons
exist in [FVY*17; YZGW20], but these have been largely focused on PPE. Here, we provide an
overview of leakage attacks against oblivious and structured keyword (point) and range ESAs
and classify them according to the following properties.

14

4 LEAKER

Types of Adversaries. The two main adversarial models considered against ESAs are
snapshot and persistent adversaries. A snapshot adversary has only access to the encrypted
structures and any associated ciphertexts. This captures attackers that, e.g., corrupt a server
and read its memory. A persistent adversary has access to the encrypted structures, ciphertexts,
and to the transcripts of query and update operations. This captures an attacker that corrupts
a server and observes all interactions.

Target. Different information can be targeted. In a data reconstruction attack, the adversary
tries to recover information about the data, whereas in a query reconstruction attack, it tries
to recover information about the queries.

Auxiliary data. Many leakage attacks require some auxiliary data or knowledge. A sampled-
data attack requires a sample from a distribution that is close to the data’s distribution
and a sampled-query attack requires one from a distribution close to the queries. On the
other hand, a known-data attack requires explicit knowledge of a subset of the data (partial
knowledge). A known-query attack requires knowledge of a subset of the queries. We leave a
systematic evaluation of sampled-data attacks as future work.

Passive or active Attacks. A leakage attack can be either passive or active. In a passive
attack, the adversary does not choose any data or queries. In an active attack, it is able to
interact with the user, e.g., by injecting data.

This work [KKM*22]. We focus on the evaluation of passive persistent query- and data-
recovery attacks where the adversary requires either no auxiliary data, known data or known
queries. The reason is that snapshot adversaries are already seen as successful in real-world
cases [NKW15]. More precisely, in the case of keyword search we evaluate query-recovery
attacks with known-data and in the case of ranges we evaluate data-recovery attacks. We
leave the evaluation of sampled-data and sampled-query attacks using real-world data as
future work.

Risk factors. We summarize our findings in Table 4.1, where we consider query-recovery
attacks that recover more than 15% of the queries and data-recovery attacks with reconstruc-
tion error less than 15% on our datasets as successful. This threshold is, of course, subjective
so the reader can use our detailed empirical results from Section 4.4 to formulate their own
interpretation and conclusions. Note that the recovery rate of an attack depends on a wide
range of factors which we identify in Section 4.4. For example, in the case of ranges, these
factors include the adversary’s knowledge of the data, the query width, and characteristics of
the data such as density and whether specific values appear. In addition, we also observed
that a skew in the data towards endpoints (1 or N) can result in very different recovery rates
(see details in Section 7.2.2.1).

15

4 LEAKER

Table 4.1: Major leakage attacks and our perceived risk. The target is either Keyword
query (K) or Range data (Value/Count, RV/RC) reconstruction. B is the max-
imum width and k the amount of missing queries per width. A denotes that all
possible response lengths occur (only within all widths < B for Ajg, or k missing
therein for Ag ;). O shows no success on our real-world datasets, ® denotes
some success (K for high partial Knowledge > 75%, D for Dense data, W for large
Widths close to N, S for Specific data values, E for Evenly and —E for unevenly
distributed data collections), @ is severe risk across all of our evaluated instances.

Attack Target ' Leakage Aux.iliary Data As.sumptions Risk (Section 4.4)
Profile (Chapter 3) Queries Data Queries Data
IKK [IKK12] K co Partial Partial Non-rep. — @)
DETIKK [RPH21] K co - Partial Non-rep. - (%
COUNT V.2 [CGPR15] K co — Partial Non-rep. — (O
SUBGRAPH-ID [BKM20] K rid — Partial Non-rep. - []
SUBGRAPH-VL [BKM20] K vol — Partial Non-rep. - []
VOLAN [BKM20] K tvol — Partial — - (%
SEIVOLAN [BKM20] K tvol, rlen — Partial — — (%
LMP-RK [LMP18] RV rid, rank — . — Dense dDp
LMP-ID [LMP18] RV rid — — — Dense Dp
LMP-App [LMP18] RV rid — - - Dense Dp
GENKKNO [GLMP19] RV rid — - Uniform — @ wy—e
APPROXVALUE [GLMP19] RV rid - - Uniform Specific D sawv-E)
ARR [KPT20] RV rid, geq — — — — D w
ARR-OR RV rid, qeq, order - - - - [}
GLMP [GLMP18] RC rlen — - A - ©)
GJW-BASIC [GJW19] RC rlen B - Ap - o)
GJW-MISSING [GJW19] RC rlen B,k - Ap - O
APA [KPT21] RC rlen, geq - - - - de

4.1.1 Attacks Against Keyword ESAs

For keyword search, most attacks are known-data attacks which require some partial knowl-
edge of the data collection. And these are evaluated by calculation the ratio between the
number of correct guesses over the total number of guesses.

The IKK attacks. The first leakage attack was described by Islam et al. [IKK12], who pro-
posed a query reconstruction attack in the persistent model using the co-occurrence pattern co
and a known fraction of the queries. Known as IKK it, roughly speaking, solves an optimization
problem minimizing a distance between candidate and observed co-occurrence. Since finding
the optimal solution is NP-complete, IKK uses simulated annealing [KGV83] to probabilistically
find an approximation. Originally introduced as a sampled-data attack, we evaluate it as
a known-data attack as in [CGPR15]. Recently, Roessink et al. [RPH21] showed how IKK
can be improved with deterministic techniques from the COUNT attack [CGPR15] (described
next). This modified attack, which we refer to as DETIKK, reduces the search space for the
annealing process and, compared to IKK, requires no query knowledge.

16

4 LEAKER

The Count attacks. A simpler attack called the COUNT attack was proposed by Cash et
al. [CGPR15]. Like IKK, COUNT is a query reconstruction attack that exploits the co-occurrence
pattern co. There are two versions of it. The first, which we refer to as COUNT V.1, requires
knowledge of some fraction of the data and queries. Its original description contained a bug
which was addressed in an updated version of the paper and lead to an improved variant of
the attack, COUNT V.2, which only requires knowledge of some fraction of the data. COUNT V.2
constructs a co-occurrence matrix and compares it to the observed co-occurrences from co.
Candidate matches are identified via confidence intervals, and are iteratively eliminated if
they are inconsistent with previously confirmed matches.

All three of these attacks, IKK, COUNT V.1, and COUNT V.2, were only evaluated on a subset of
the Enron database [Coh15] that was restricted to the highest-selectivity keywords. When
evaluated in the same setting, COUNT V.2 outperforms IKK but still requires > 60% partial
knowledge.

The BKM attacks. Recently, Blackstone et al. [BKM20] introduced three new passive query
reconstruction attacks. The BKM passive attacks outperform the IKK, COUNT V.1 and COUNT V.2
while exploiting a much smaller leakage profile. The first, VOLAN, exploits the total volume
pattern tvol and matches a query to the keyword with the closest expected total volume
from the adversary’s known data. The second attack, SELVOLAN, extends this by further
identifying candidates with a total volume in the known data falling within a window of the
expected volume based on tvol. It then selects the best candidate using the response length
pattern rlen. The third attack, SUBGRAPH, is a framework used to design several attacks using
any atomic leakage pattern, i.e., any pattern leaking information about individual documents.
It constructs two bipartite graphs: one from the observed leakage and the other from the
known data. It then filters candidates via inconsistencies between the graphs, confidence
intervals (the leakage roughly has to match the expected value), and an optional cross-filtering
that tries to invert the leakage and checks if the candidate appears in all resulting entries.
Two concrete attacks that result from the framework are SUBGRAPH-ID and SUBGRAPH-VL,
which exploit the response identity pattern rid and the volume pattern vol, respectively.

Blackstone et al. [BKM20] further highlighted the fact that selectivity is a major factor for
attack performance which has previously been neglected: For highest-selectivity queries taken
from the Enron database, especially the SUBGRAPH attacks work well for a partial knowledge
as low as 5%, but if the query space is populated with queries from the database with lowest
selectivity, the attacks mostly fail, only uncovering 20% of the queries even at full database
knowledge. It remains unclear how selective queries in real-world query logs are. Note that
many attacks assume that queries do not repeat (though this assumption can be circumvented
if qeq is known).

Prior evaluations. The above attacks were evaluated on the Enron e-mail dataset [Coh15],
with [BKM20; RPH21] also using public e-mail sets [CLO7]. Since only the code of [RPH21]
is open-source, replicating results or comparing the attacks requires additional effort. It is

17

4 LEAKER

therefore more cumbersome to evaluate new data sources to, e.g., show an overfitting of
the attacks to e-mail data. Furthermore, no evaluation has considered real-world queries
but rather just sampled keywords from the data collection in an inconsistent manner (e.g.,
highest-selectivity [IKK12; CGPR15] vs. lowest-selectivity [BKM20; RPH21]). Given that this
enables or breaks the attacks [BKM20; RPH21], evaluation on real-world queries remains an
important open aspect that we tackle.

Other attacks not covered. An attack that exploits geq with auxiliary data was given by Liu
et al. [LZWT14], and was recently improved by Oya and Kerschbaum [OK21] also using rid.
Recently, Damie et al. [DHP21] and Gui et al. [GPP21] proposed sampled-data attacks. Active
file-injection attacks are considered by Zhang et al. [ZKP16], Blackstone et al. [BKM20], as well
as Poddar et al. [PWLP20]. Additional specialized attacks against specific ESA instantiations
were considered in [PW16; VMO17; AAGG18]. We focus on general passive attacks that do
not rely on auxiliary data.

4.1.2 Attacks Against Range ESAs

We now turn to attacks against oblivious or structured range ESAs. In this setting, there
are three variants of attacks: reconstruction attacks, approximate reconstruction attacks and
count reconstruction attacks. More precisely, a reconstruction attack recovers the exact val-
ues in a numerical collection whereas an approximate reconstruction attack only recovers
an approximation of the values. A count reconstruction attack recovers the (approximate)
number of times the values occur. Range attacks tend to work “up to reflection"”, meaning
that the attack recovers either the original numerical collection (ey,...,e,) or its reflec-
tion (N —e;+1,...,N—e,+ 1). This can be viewed as a loss of 1 bit of information. In our
experiments in Section 4.4 we always report the minimum error rate over either the original
collection or its reflection.

The KKNO attacks. The first attacks against encrypted range schemes were proposed by
Kellaris et al. [KKNO16]. Two attacks were described, both of which are data reconstruction
attacks in the persistent model. The first, KKNO-1, exploits the response identity pattern rid
and assumes that queries are chosen uniformly at random. At a high level, it determines an
entry as having minimal (or maximal) value if it is not contained in the largest proper subset
of all identifiers, and determines other entries based on co-occurrence with that entry. The
second attack, KKNO-2, only needs the response length pattern rlen but still assumes uniform
queries. Intuitively, the attack solves a system of quadratic equations of distances between
values and the amount of observed queries with the corresponding response length to uncover
the distances between entries. Because both attacks were directly improved upon (described
next), we did not evaluate them in our work.

18

4 LEAKER

The (G)LMP attacks. Lacharité et al. [LMP18] improved on the query complexity of KKNO-1,
by proposing three attacks which we refer to as LMP-RK, LMP-ID, and LMP-App. These are
data recovery attacks in the persistent model exploiting the response identity pattern rid,
with LMP-RK also using the rank pattern. Specifically, the third attack only recovers an
approximation of the values based on reconstructed intervals. In general, the attacks identify
the left endpoints of the queries (e.g., via rank) and assign these values to entries by excluding
differing entries seen in the response.

Grubbs et al. [GLMP18] also improved on the KKNO-2 attack with a new attack we refer
to as GLMP that only requires the response length rlen. GLMP, however, only recovers the
frequency (or value counts) of values as opposed to the values themselves. Note that KKNO-2
can reconstruct values using rlen alone but only if the data is dense. The attack relies on the
assumption that the queries are made in such a way that all response lengths are observed.
At a high level, it reduces the observed response lengths to “elementary” queries (in the sense
that they have the form (1, y)) and uses graph theory to reconstruct counts based on basic
properties of elementary queries.

The GJW attacks. Gui et al. [GJW19] proposed attacks in the persistent model that only
exploit the response length rlen for count reconstruction; as opposed to the KPT attacks
which also require the response identity and/or the query equality geq. The main attack,
called GJW-BAsIc, works when the query width is bounded. It builds an initial solution similar
to GLMP and uses a breadth-first search that incrementally extends solutions consistent with
the leakage. Modifications were introduced for missing queries (GJW-MISSING) and other
countermeasures, which we consider outside the scope of this work.

Approximate reconstruction attacks. Several works attempted to weaken the assumptions
needed by the KKNO attacks and their extensions. Grubbs et al. [GLMP19] describe three
attacks that do not require density but still assume uniform queries. To do this, these new
attacks focus on sacrificial e-approximate data reconstruction instead of exact reconstruction
where € = 1/N yields full data reconstruction. The first is GENKKNO, which extends KKNO-
1 to an approximate data reconstruction attack by assigning values to entries based on a
comparison of the observed and expected amount of occurrences in the leakage. Due to these
estimations being individually symmetric with regard to the endpoints (1 and N), queries
close to one endpoint are used to establish a global reflection. The second attack is APPROXVAL,
which assumes the existence of at least one entry with values occurring in a specific data
range, and uses a single favorably-located entry as an anchor that can be identified more
easily than other entries. The values around the anchor are then estimated similarly to
the GENKKNO attack. The third attack is called APPROXORDER and uses the PQ-tree data
structure to approximate the order of the data collection based on the response identity
pattern rid, assuming that the data is not heavily concentrated over a few values.

19

4 LEAKER

The KPT attacks. Kornaropoulos et al. [KPT20] describe an approximate value reconstruc-
tion attack in the persistent model that is agnostic to the query distribution, denoted as
ARR (agnostic reconstruction range). It reduces to the problem of support size estimation, in
which the number of outcomes not observed is estimated from the frequency of observed
outcomes. By estimating support sizes of identifier subsets using the response identity and
query equality patterns (rid and geq), the corresponding distances and, therefore, the values
can be uncovered and are assigned according to an order, which can be uncovered via APPROX-
ORDER. While ARR does not require density or uniform queries, the instantiation of [KPT20]
assumes that the values are all unique. They suggest alternatives for dealing with the more
general case of repeating values, which we use in our work. We provide more details on this
in Section 7.1.4. In our evaluation, ARR uses APPROXORDER to uncover the order, but we
also investigate the case where it is directly leaked, which we denote by ARR-OR!.

Very recently, Kornaropoulos et al. [KPT21] also applied support size estimation to the setting
where only the response length and query equality patterns (rlen and geq) are available,
resulting in an approximate count reconstruction attack?. It generalizes previous rlen at-
tacks to estimating the number of queries for specific response lengths and solving their
relation to value distances, including observations about state-of-the-art encrypted range
search schemes [FJK*15; DPP*16]. As a result, the attack is parameterized by the ESA, and
denoted by APA (agnostic parameterized attack). Crucially, APA deals with multiple possible
reconstructions and requires no assumptions about the query distribution and also deals with
non-dense data, while the GLMP and GJW attacks require auxiliary data information.

Prior evaluations. No implementations of the previously mentioned attacks are open-
source. For their evaluations, [KKNO16; GLMP18; GJW19; KPT21] all use subsets of
the HCUP [Age88] medical dataset and the remainder of the above attacks were never
evaluated on real-world data. The only practical comparison between attacks (GENKKNO
and ARR) is given on artificial data in [KPT20]. To the best of our knowledge, no prior
evaluation considered real-world queries, which was identified as an open question in the
cryptanalysis of range ESAs [GJW19].

Other attacks not covered. The above works also introduced sampled-data variants: A
version of LMP [LMP18] uses auxiliary data information to require fewer queries, while Grubbs
et al. [GLMP18] also incorporate frequency information. APPROXDATA [GLMP19] demonstrates
how to use APPROXORDER to uncover exact values if density and an auxiliary data distribution
are given, and [GJW19] show how GJW-BASIC can be improved with auxiliary information
about the data. [GLMP18] also recover values of update operations in case the frequencies
have already been determined. k-NN queries are considered in [KPT19; KPT20] and Falzon et
al. [FMA"20] and Markatou et al. [MFST21] recently proposed attacks on two-dimensional

!Note that order leakage is only common in PPE-based ESAs.
2It uncovers ordered values.

20

4 LEAKER

Parameters

] |
Da{:l . — Datastore | POpU- T, teeism
Sources T FileParser late..tr QuerySpace
| p,f,gss QueryLog [+ } sampled queries \ﬁ
Datalriter —» Sltcéred / LeakagePattern — Attack |
naex Database |« pYsaipiecidatabases Visualizer# Output
pre-"" Extension » Statistics”

compute
n query

Cache

=im
—
—

Figure 4.1: High-level overview of LEAKER’s major components and attacks and/or statistics

evaluation flow. Dashed arrows indicate optional usage. With the exception
of Extension, all parts can be used for both keyword and range queries.

ranges. Also we did not consider the attack of Markatou et al. [MT19] which targets
one-dimensional range queries but assumes that all possible queries are issued.

Note that all of the above attacks (point and range) concern structured or oblivious ESA.
Attacks on PPE-based ESAs already indicate practical insecurity [BCO11; KS12; IKK14;
CGPR15; NKW15; DDC16; GSB*17; BGCT18].

4.2 The LEAKER Framework

We designed and implemented LEAKER with the following goals in mind:

integration: LEAKER makes the integration and evaluation of new attacks effortless. Re-
searchers can focus on the design and leave the evaluation process to LEAKER. This ranges
from interfacing with various data sources to plotting and visualizing the results.

comparisons: LEAKER includes implementations of the main leakage attacks for both
point/keyword and range queries. By having attacks implemented in the same framework,
they are easier to compare. It also makes it easier to evaluate countermeasures on existing
attacks.

data sources: practitioners with proprietary data can use LEAKER to evaluate attacks on
their specific data, leading to a tailored evaluation.

usability: LEAKER runs on many platforms and does not require domain-specific
knowledge—one only needs to specify the data sources and evaluation criteria.

open-source: LEAKER (including its evaluation scripts) are freely available as open source
software at https://encrypto.de/code/LEAKER.

21

https://encrypto.de/code/LEAKER

4 LEAKER

4.2.1 Architecture

For interoperability, we implemented LEAKER in Python 3.8. It has 8 149 lines of code (1 148
are tests). It also includes implementations of the major keyword and range attacks, which we
discussed in Section 4.1. LEAKER evaluates a leakage attack on a data collection using queries
from a query log and outputs a visualization of the results. A Database is the dataset from
which LEAKER will generate the data collection and a QueryLog is the dataset from which
it will choose the queries. LEAKER has a highly modular design, is heavily interfaced, and
contains component tests. This achieves our goals of effortless integration of future attacks
or combinations thereof, pre-processing mechanisms, leakage profiles, mitigation techniques,
query types, and evaluation strategies. Its classes support Python’s built-in methods, letting,
e.g., a database be used as a context manager or query spaces as lists. The result is an intuitive
handling of data that can be processed in any desired way. Figure 4.1 illustrates an overview
of LEAKER’s modules, which we detail below: a pre-processor, a datastore, an attack and
pattern library, an evaluator, a visualizer, and a statistical analyzer.

Pre-processor. The pre-processor parses and prepares data collections and query logs for
use by the other LEAKER modules. It includes a set of parsers that can be arbitrarily combined
to build a data collection or query log from a directory of files. Currently, LEAKER includes file
parsers for .csv, .json, .xml, .txt, .mbox, .pdf, .docx and .pptx files. In the query logs
that we identified, range queries were often part of a larger SQL query so we implemented a
SQL parser that identifies and extracts range queries contained in complex SQL queries.

Once parsed, LEAKER uses standard information retrieval techniques to tokenize strings
into keywords, extract stems, remove stop words, and identify numerical values. Due to
its modular design, the pre-processor can be easily extended for new file types by simply
implementing a new FileParser. We expect that LEAKER’s generic pre-processing might
independently prove useful for the encrypted search community.

Datastore and cache. After a file has been processed, it is passed to an indexer which
stores the data in a set of internal data structures for later use. Numerical data is additionally
discretized before being stored. Our choice of data structures to store and manage data
collections and query logs is important because one of our main goals is to evaluate attacks on
large datasets. For example, compared to previous evaluations of co-occurrence attacks, which
used datasets with 500 [CGPR15], 1500 [RPH21], or up to 2500 keywords [IKK12], LEAKER
evaluates the same attacks on datasets with more than 250000 keywords (cf. Section 4.3).
To achieve this, we use NumPy [HMW " 20] arrays to store and process numerical data and
Whoosh [Chal2] to store and process keyword data. We chose Whoosh because of its Python
compatibilitiy and ability to store additional metadata such as document volume in the
index.

22

4 LEAKER

To get significant results, a single LEAKER analysis can require a large number of repeated
evaluations. We speed up NumPy operations by integrating the optimized just-in-time com-
piler Numba [Anal8]. To address the costly repeated querying of Whoosh structures on large
datasets, we use memoization and store the results of Whoosh queries in a cache so we can
reuse them across evaluations. We call the corresponding interface a data Extension. In
particular, the cache also computes leakage patterns resulting from the query space and the
entire database. Note, e.g., that the co-occurrence pattern has a storage complexity require-
ment of O(#W - (#W + n)). This cache is interfaced as a database Extension and LEAKER
already provides extensions relevant to all leakage patterns described in Chapter 3.

Attack & pattern library. LEAKER comes with a library of attacks and leakage patterns
that can be called on any data collection and query log. We implemented the main attacks
from Table 4.1 and—with the exception of GLMP and GJW®—verified their correctness by
replicating the results from the original papers. The attack library is easily extendable to new
attacks. One just has to realize an interface performing recovery given the observed required
leakage.

More precisely, the user has to implement a recover method to instantiate a new Attack,
along with the LeakagePattern instantiation of the required leakage*. For a keyword
dataset, the output of recover consists of the list of uncovered keywords, or a list of values
or counts for a range dataset. All attacks in LEAKER’s library are purely in Python except for
APPROXORDER [GLMP19], where we use a C++ implementation of PQ-trees [Gro08]. The
files are automatically compiled and loaded without requiring any interaction. Since we could
not find any public Python-compatible implementations of the Jackknife or Valiant-Valiant
estimators used in the ARR and APA attacks [KPT20; KPT21] we implemented them ourselves
in Python. To incorporate a new type of leakage pattern, one needs to implement a leak
method which specifies the information learned given a sequence of queries and a database.
Particularly for the keyword case, this method should also provide an optional sampling
method for partial knowledge via a database Extension. The possibility to add new leakage
patterns is extremely useful as there are several works that either alter the form of the pattern
or suppress it such as in [CGPR15; BF17; CLRZ18; AHKM19; KM19; PPYY19; DPPS20].

Evaluator. This module evaluates attacks. Given an attack and a leakage pattern from the
library and a data collection and query log from the datastore, LEAKER proceeds as follows. It
creates the observed leakage of the leakage patterns on the data collection and query log. Since
this can be expensive (e.g., the co-occurrence pattern requires O(#W - (#W + n)) storage
and time) it is also cached. Then, it executes the attack on the observed leakage a number
of times (in parallel) and stores the results. To evaluate attacks that require known data

3We used synthetic data to verify the correctness of these two attacks because we did not have the original
data that was used.
“LEAKER comes with instantiations of most common leakage patterns.

23

4 LEAKER

and/or queries, it first executes an attack-specific sampling algorithm for the known data. All
different attacks on different samples can be run in parallel.

Visualizer. Once all results have been collected, they are used to compute the desired
accuracy results (e.g., depending on a choice of available errors) and passed to a visualizer.
The visualizer then translates them into graphical .png and TikZ plots, which can easily be
extended to different error or visualization types. All plots in this work were generated with
LEAKER.

Statistical analyzer. LEAKER also includes a statistical analyzer module which computes
metrics to evaluate query and data distributions that are then also handled by a special-
ized DataSink which plots statistics over its data sources. This is useful to get a better
understanding of a data collection’s and a query log’s characteristics. All statistic metrics and
sinks used in this work are already provided by LEAKER.

4.3 Data Collections & Query Logs

In many instances, attack evaluations were confined to small and/or few data collections
without any query logs, which are hard to find. To address this, we describe new datasets
including query logs that we believe capture a broad range of realistic scenarios. The datasets
include both publicly-available and private data collections and query logs. We provide
in Section 7.2.1 a list of other possible data sources that could be used with LEAKER. In
Section 7.2.1 we also describe how we pre-processed our data and in Section 7.2.2 we
provide some statistics of our datasets. Though some aspects of our datasets are similar to
previously-used datasets, we selected data with various properties to see the influence they
might have.

Data availability. All data is publicly available, except for the private datasets we collected
from our volunteers. All our data pre-processing is integrated into LEAKER. Data not usable
for attacks but for statistical purposes is shown in Section 7.2.3. Particularly, a problem is that
public data inherently does not model a setting where the data is private, in which a client’s
behavior might be very different. For these cases, we show evaluations on private data that
clients performed on their own machines with LEAKER. Based on these different data, we are
in a position to ascertain the severity of leakage attacks in different usage scenarios.

4.3.1 Keyword Data

We present an overview of all of our keyword data in Table 4.2 and give more background in
the following.

24

4 LEAKER

Table 4.2: Overview of our keyword search use cases and dataset properties. #Q) is the
size of the entire log and #Q the amount of unique queries. n is the amount of
documents and #W the amount of unique keywords.

Case Data Query log Data collection
#users #Qp #Q n #W
Web AOL [PCTO06] 656k 52M 2.9M 151k 268k
Genetic TAIR [ECW'14] 1.3k 650k 54k 115k 690k
Email GMail (ours) 6 - 16-100 6k-47k 60k-895k
Cloud Drive (ours) 1 - 45 200 19k

Search engines. A major proposed application for ESAs are encrypted search engines, e.g.,
for desktop search applications or to add search capabilities to email clients or file managers.
Due to privacy concerns, we were not able to find public datasets matching these settings so
we proceeded as follows.

First, we evaluated attacks on the private data of 7 volunteers by providing scripts to locally
extract their GMail and Google Drive query logs and data collections. Out of these participants,
6 evaluated the attacks on their GMail accounts and 1 on their Google Drive account. They
returned to us basic statistics of their data, the accuracy of the attacks, and their consent to use
and publish the results. We will note the average results of all evaluations as well as the worst
and best cases. No personal information is included in this work or in LEAKER. We highlight
the Drive instance and three GMail instances of different activity levels: GMail-S, GMail-M,
and GMail-L. Their basic dimensions are shown in Table 4.2. This data directly shows a private
cloud storage and private cloud email search case.

Because the number of private users we had access to was small and because we cannot
release their data, we also used public search engine data. Specifically, we used Wikipedia
[Wik14] as a data collection and the AOL query log [PCT06]. We recognize, of course, that
Wikipedia is public so it is not completely representative of the scenarios mentioned above in
which one often queries private data. Furthermore, it is clear that using AOL queries on a
Wikipedia data collection is not ideal but, given the scarcity of real-world data with matching
query logs, this is the best one can do at the current time.

Genetic. We were also interested in domain-specific instances that might be queried in a
totally different manner. As a prominent case, consider a lab querying large-scale human
genetic data for health research, e.g., looking for expressions of specific proteins in gene
annotations. Because this query data is very sensitive and not publicly available, we used the
following approach.

We performed evaluations on publicly available data that can be seen as related to the above
case. Concretely, we use The Arabidopsis Information Resource (TAIR) database [LDS™10] as a
data collection as well as its publicly released query log [ECW*14]. The data contains genetic
annotations and expression information of the Arabidopsis Thaliana plant, which itself is not

25

4 LEAKER

Table 4.3: Summary of our scientific data range query logs on the PhotoObjAll.dec collec-
tion [SGTT07] (n = 5242134 entries with domain N = 10456, density 95.82%,
and an even data distribution). #Qp is the size of the entire log and #Q the
amount of unique queries.

Data #users #Qp #Q
SDSS-S 1 1.4k 215
SDSS-M 1 13.4k 5562
SDSS-L 1 382k 8220

sensitive. However, we believe it provides a close model for querying in genomic research, as
similar information might be queried in the sensitive case of human genomic data.

4.3.2 Numerical Data

We found five datasets that capture scientific, medical, human resources, sales, and insurance
scenarios. The dataset characteristics are summarized in Table 4.3 and Table 4.4. The data
is discretized by scaling®, rounding, and mapping to integers which allows us to evaluate
attacks without losing too much precision. We display selected data distributions in Figure 1
in Section 7.2.2.1, from which we derive the general risk factors of different distributions.

Scientific data. Data from scientific research can often be sensitive. This is the case, e.g.,
with data generated from satellites, drug and medical studies, or nuclear experiments. For
this, we use the Sloan Digital Sky Survey (SDSS), which contains a variety of astronomical
data [SGT*07]. In addition to astronomy, the SDSS has also been used to investigate user
behavior [Zhall; NBB*15]. We used the SDSS to create one data collection and 3 query
logs (cf. Table 4.3) using a scale factor of 100. We do not notice that the data is significally
distributed towards specific values and call it a rather even data distribution in our risk
factors (cf. Section 4.1).

The data collection is built from the SDSS’s PhotoObjAll declination database which con-
tains n = 5242134 entries with a maximum value of N = 10456. The query logs we
created have different sizes: SDSS-S includes 1433 queries (215 unique), SDSS-M 13412
queries (5562 unique), and SDSS-L 38273 queries (8 220 unique).

Medical. Due to high sensitivity, medical data has long been proposed as an ESA application
and many works used health data like HCUP [Age88] to evaluate attacks [NKW15; KKNO16;
GLMP18; LMP18; GJW19; KPT21]. While HCUP is a real-world dataset with millions of
patients, its attributes usually have small domain, e.g., a patient’s age. While evaluation on

°To scale a value we multiply it by a scale factor 10%, where a € Z.

26

4 LEAKER

Table 4.4: Summary of our range use cases and data with n entries, domain size N, and den-
sity 6. E and —E denote even and uneven data distributions, respectively (cf. Sec-
tion 4.1).

Case Data collection Scale n N 6 (%) Distr.
MIMIC-T4 [JPST16] x10 8058.00 73.00 80.8 —E

Medical MIMIC-PC [JPSt16] x10 7709.0®684.00 8.6 -E
MIMIC-CEA [JPST16] x1 2844.00978.00 3.3 -E

HR Salaries [Gov18] x0.01 536.00 395.00 2.3
Sales Sales [Wal14] x1 143.006288.00 2.3
Insurance Insurance [Cit18] x1 886.@b 425.00 1.2 —E

small domains is important, we also wanted to know how various attacks performed on varying
and large domains so we considered the Medical Information Mart for Intensive Care (MIMIC)
dataset [JPST16] which includes records of medical blood and urine tests performed on ICU
patients of the Beth Israel Deaconess Medical Center between 2001 and 2012. We used
MIMIC to create three data collections: (1) MIMIC-T4 for patients’ free thyroxine, used to
evaluate thryroid function; (2) MIMIC-PC for patients’ protein/creatine ratio to detect kidney
damage or pregnancy; and (3) MIMIC-CEA for patients’ carcinoembyronic antigen to detect
cancer. We note that MIMIC values are skewed towards low values with just a few high-value
outliers, which we call a rather uneven data distribution in our risk factors (cf. Section 4.1).

Human resources. Human resource databases contain personally identifiable information
like salaries and demographic information. To capture this, we used a March 2018 snap-
shot of minimum salaries of the UK Attorney General’s Office junior civil servants [Gov18].
Value frequencies are rather uniform, which we call a rather even data distribution in our
risk factors (cf. Section 4.1). We scale values by x10~2 without loss of precision. Our
database Salaries, which contains n = 536 records, a small-sized maximum value of N = 395,
and has a density of 2.28%.

Sales. Sales data can also be sensitive as it contains trade secrets. We use data released by
Walmart for a prediction competition [Wal14], containing weekly sales of department 1 of
store 36 from 2010 to 2012. Value frequencies are (except for one outlier) uniform, which
we call a rather even data distribution in our risk factors (cf. Section 4.1), and has a number
of records n = 143, a domain size N = 6288, and a density of 2.26%.

Insurance. Insurance data may be sensitive since it can reveal financial or health challenges.
We use a dataset of property damage insurance claims [Cit18] released by the New York
Department of Transportation. They were filed with Allstate in September 2018. Values
are skewed towards the low endpoint, i.e., a rather uneven data distribution in our risk
factors (cf. Section 4.1).

27

4 LEAKER

4.3.3 Privacy Considerations

The experiments described in this work were exempt of IRB approval from our institutions.
None of the datasets used were de-anonymized and we stress that LEAKER cannot be used to
de-anonymize data; its only use is to evaluate the efficacy of leakage attacks. All the datasets
we use are public with the exception of the private data for the search engine scenario.
We obtained consent from all involved parties to publish the attack evaluations and some
statistics. Access to PhysioNet’s MIMIC [JPS*16] data is constrained and was only handled
by approved authors who completed the required training courses and strictly adhered to
PhysioNet’s data use agreement.

4.4 Empirical Evaluation

In this section, we use LEAKER to evaluate all the attacks described in Section 4.1 on the
datasets from Section 4.3 and identify the main characteristics that impact each attack’s
recovery rate. For both keyword and range attacks, we lay out our evaluation strategy,
interpret results, and infer the risk attacks pose in the respective cases. Keyword attacks are
evaluated on real-world query logs, while we use both real-world and artificial query spaces
for range attacks.

As prior evaluations (cf. Section 4.1, Section 7.2.2) were confined to one respective data
setting and sampled queries, we believe our independent re-evaluation on a range of novel
datasets using queries from real-world sources provides an additional understanding of leak-
age (see the discussion on ESAs security in Chapter 1).

4.4.1 Keyword Attacks

So far, keyword attacks were analyzed on real data by selecting queries from the keyword
space, either just using the ones with the highest frequencies [IKK12; CGPR15] or using
highest and lowest selectivities and a range of low frequencies [BKM20]. In fact, [IKK12;
CGPR15] even restrict the keyword space to just the highest-frequency keywords. The authors
of [BKM20] argue that in cases where users search for specific information, the frequency will
be very low and show that attacks do not work in this setting. This is intuitive, as leakage will
be confined to very little documents, making it less unique and identifiable in regards to other
keywords of low frequency. Having understood query behavior in very different data sources,
we challenge these assumptions by evaluating attacks on real-world keyword query logs. An
intuition is presented in Figure 4.2: When evaluating the state-of-the-art attacks of [BKM20]
in the lowest-frequency case (Figure 4.2 a) by sampling from the database, the attacks fail to
recover any significant information and confirm the results of [BKM20]. However, the lowest-
frequency queries issued by users have a much greater frequency than the lowest-frequency
queries in the database. Therefore, the attacks work much better in reality than expected,

28

4 LEAKER

1.0 VolAn 1.0 -
SelVolAn
E 0.8 —#- Subgraph-ID :::; 0.8 =
—6— Subgraph-VL _$ T = - —
: I e
L 0.6 1 9 0.6 T
= i = i
> 0.4 > 0.4 . VolAn /
9] o /
Csy 3 SelVolAn /
0.2 1 0.2 97 @ Subgraph-ID y
= —— Subgraph-VL ﬂ
—5=—8 & 5 5 8§ § = . g
0.0 t*i:!“g k;i === 1 00— —o—% =7 :
0 20 40 60 80 100 0 20 40 60 80 100
Partial Database Knowledge in % Partial Database Knowledge in %
(a) Database (b) Query log

Figure 4.2: Fraction of correctly uncovered queries of the attacks of [BKM20] on the TAIR
keyword database (cf. paragraph 4.3.1). Queries are (a) either taken from the
database [LDS™10] (prior artificial style) or (b) from a client’s query log (our
real-world evaluation). Here, we use the queries of the respective source least
frequent in the database (lowest-selectivity). Parameters are the same as in Sec-
tion 4.4.1.

even when attacking users’ queries with the lowest frequency (Figure 4.2 b). In this section,
we show that in most cases, even for small-scale private email search with little adversarial
knowledge, leakage attacks are highly successful in recovering the queries.

We present results for the private GMail and Drive logs in Figure 4.3 and results for the
public AOL and TAIR query logs in Figure 4.4 and Figure 4.5. Further plots are given in
Apendix Section 7.1.1. Prior to describing our results, we introduce relevant parameters and
our experimental setting.

4.4.1.1 Evaluation Setup and Strategy

Our goal is to evaluate keyword attacks under realistic settings without the need for modeling
databases nor query logs. We therefore perform multiple evaluations for multiple clients
then plot recovery rates for different fractions of partial knowledge, similarly to prior work.
However, for the public data sources, we had to sample queries from the query log instead
of attacking the whole log due to its scale. This allowed us to investigate the worst case in
terms for attack performance, i.e., lowest-frequency queries. We present the attack results on
the public AOL and TAIR logs in Figure 4.5 and Figure 4.4, and the results on private cloud
data in Drive and GMail in Figure 4.3. We shall first describe various relevant parameters to
our experiments then summarize our findings:

29

4 LEAKER

Frequency. Each query in the query log matches a number of entries in the data collection
which is its frequency. We investigated two settings: high frequency and low frequency. The
former includes an average frequency ranging from 1806 to 5707, whereas the latter ranges
from 1 to 859.

In particular, we noticed that queries with a high frequency have responses with distinct
lengths (volumes), yet have a non-trivial overlap when it comes to the response identity, i.e.,
every two queries share several records in their responses. For a very low frequency, the
opposite holds: fewer records are shared between every two queries, whereas the volume of
the query responses tends to be the same.

In order to assess the impact of varying frequencies we populate query spaces with different
selectivities from the query log (not the data collection, though the frequency is computed on
the data collection). We look at the most and least active clients, separately. The resulting
mean frequencies of the respective query space can be seen in Figure 4.5 as well. We note an
anomaly of a low amount of unique queries found in the database for the most frequent AOL
users, which results in the query spaces for highest and lowest frequency to be equal. As
indicated by the high selectivities of the queries (cf. Section 7.2.4.1), attacks are mostly rather
successful. At a higher frequency, volume information of multiple documents becomes very
unique, whereas the keywords are so frequent in the database that identities become less
unique for them. For a very low frequency, the opposite holds: fewer documents cannot be
distinguished by volumes, but the individual identifiers the clients query for still amount to
rather unique information. Yet for very low frequencies (freq(Q) = 1), however, we uncover
a surprising result: SUBGRAPHVL does not work at all, while SUBGRAPHID can still correctly
recover queries at a low but significant rate, we believe this is due to the underlying leakage

types.

Apart from that, the volume analysis attacks of [BKM20] only perform well for a high frequency
and a high partial knowledge. COUNTV2 [CGPR15] outperforms them only for queries of
very high frequency (freq(Q) = 5707), which is just reached in the aggregated query space,
where it achieves significant recovery rates with 30% or more partial knowledge. We also
evaluated IKK [IKK12] using partial knowledge. However, due to the involved database
sizes, we stopped it after a runtime of over 48 hours per run, after which it did not recover
more than the 15% of queries leaked to it even with full adverserial knowledge and highest
frequency queries in the aggregated space. We therefore conclude that IKK is not feasible for
large-scale databases.

Number of users. When it comes to the number of users, there are two main settings in
which structured and oblivious ESAs can be deployed: single-user or multi-user. The former
characterizes a setting in which a single user queries its dataset, while in the latter multiple
users query the same dataset. In the single-user case, we evaluated the attacks by taking the
average recovery rate over the queries of 5 users each of which made at least 2 000 queries.
In the multi-user setting, we evaluate attacks on a sample of the query logs which, in the
case of AOL consists of 656038 users and in the case of TAIR consists of 1263 users. For the

30

4 LEAKER

private Google data, we only evaluated the attacks in the single-user setting since each user
queried their own data collection. While the number of users in our private Google dataset is
low, the experiments on AOL and TAIR can give some indications as to how the attacks would
perform on datasets with a large number of users.

User activity. We noticed that users have different query activities, with some issuing a
lot of queries while others are less active. Over all of our datasets, with the exception of
the Google data, the most active user issued 6 389 queries while the least active user issued
2000 queries. Since we did not find any noticeable difference in recovery rates (for all
attacks) against the most active and the least active users, we only report the least active case
in Figure 4.5. The most active case is provided in Figure 3 in Appendix.

Query sampling. Real-world query logs can be extremely large, and given the computational
complexity of some attacks, we had to limit the number of queries we used. To do this we
sampled the query logs using two approaches which we refer to as full sampling and partial
sampling. Full sampling outputs a new, smaller query log composed of keywords sampled
independently of whether they exist in the adversary’s known-data set or not; in other words,
it is possible that a keyword appears in the query log but is unknown to the adversary. In
contrast, partial sampling generates a new and smaller query log that is only composed of
keywords in the adversary’s known-data set. This captures a worst-case scenario where the
user only queries for keywords in documents known to the adversary.

We consider partial sampling because, contrary to having real-world queries, we have no data
to indicate which parts of the data collection an adversary might obtain for its knowledge.
This captures results for a worst case in which a user only queries for keywords that appear
at least in one of the records in the adversary’s knowledge. For each of the public query logs,
we sampled logs of size 500, 2500 and 5000. In Figure 4.3, the size was equal to the entire
length, i.e., the attacks targeted the entire query logs. Since we did not observe any major
deviations in the recovery rates of the attacks based on size we only show the results for
(sampled) query logs of size 500. Since the private query logs were already small, we did not
sample them.

Query repetition. We observed that some of the queries in the log are repeated whereas
some previous works assumed distinct queries. This assumption makes sense if the adversary
can distinguish between queries based on the query equality (which is disclosed by many
structured ESAs) and ignore repeated queries but the assumption no longer holds for oblivious
ESAs or structured ESAs that do not leak the query equality [KMO18; GKM21]. Given that
some attacks apply to both structured and oblivious ESAs and may be affected by this, it was
important to evaluate both settings: with and without repetition.

31

4 LEAKER

Clients. We investigate two parameters concerning clients to establish if a client’s activity
has an influence on the attacks performance, we look at the different activity levels and take
the most and least active clients, respectively in Figure 4.5. We limit individual clients to
5 to allow for a practical evaluation, and require a minimum of 2 000 queries to represent
meaningful query spaces. Furthermore, in Figure 4.5, we evaluate the case where queries are
aggregated from all clients. As expected (cf. Section 7.2.4.1) and seen in Figure 4.5, a client’s
activity has no influence over the attack performance.

Query distribution. Increasing the number of the samples does not introduce any queries
with a frequency so low that would be of significance to be accounted for the attacks accuracy.
Our intuition holds true after including additional query space sizes of 2 500 and 5 000 to the
experiments of Figure 4.5, where they recover similar fractions of queries for all sizes.
Nonetheless, significant information could still be uncovered as a fraction of the chosen query
sampling approach, as an example if we assume that queries are not repeated, then this can
be used to exclude candidates by the attacks. To see the effect of this assumption, we show
in Figure 4.4 an evaluation where the queries are sampled with replacement, compared to
when sampling without replacement; cf. Figure 4.5)

Experimental setting. For public datasets, all our evaluations were run on an Ubuntu
20.04 machine with 390GB memory and 1TB disk space. Unless explicitly specified, every
attack is evaluated as follows: given a query log, a data collection, and a specific combination
of the parameters highlighted above, we sample a new query log and data collection. For a
fixed rate of adversarial knowledge (i.e., known-data rate), we first sample a subset of the
entire data collection ¢ times, and for each sample, we sample a subset of the query log A
times. We denote this as a £ x A evaluation and it accounts for £ - A evaluations. For most
experiments we picked £ = A =5 and display the median, maximum and minimum recovery
rate.® We vary the adversarial knowledge from 10% to 100% with a 10% incremental step.
In the public setting, we attack 150 queries drawn from the query log according to their
frequencies. We denote by X-Y a setting in which the type of user and the frequency are
set to X and Y, respectively.” Recall that X can be set to all users (A) or to the single-user
setting (S). Y can be set as low (L) or high (H) frequency. For private data, each participant
ran the evaluation on their own machine using their entire query log, which did not require
any query sampling process.

5We limited evaluations to 25 per user due to the computational overhead incurred by some attacks. As an
instance, the COUNT V.2 attack took one day to complete a single iteration for 5 users. In addition, we were also
pushed to bring down the values of some parameters in order for some of the attacks to work. Similar to any
cryptanalysis work, we believe that future attacks should not only provide their recovery rates, but also a precise
analysis of the computational cost.

"For ease of exposition, we mainly focus on these two parameters, but we also varied the type of the query
sampling, the query repetition, or the length of the query log.

32

4 LEAKER

Discussion. There are obvious limitations to some of our experiments. One example is in
how we obtain the adversary’s known-data. Since we do not know how an adversary would
choose/obtain this data in practice, we have to make some assumptions. For our experiments,
we chose to run experiments with multiple known-data samples chosen uniformly at random
but other approaches could be considered and it would be interesting to know how they affect
the recovery rates. Another aspect is in how we sample the public query logs to generate
smaller more tractable logs. We considered different strategies and opted for uniform sampling
but, again, one could consider other ways to sample. In the following, we discuss our results
for each of the attacks we have evaluated.

4.4.1.2 The IKK Attacks [IKK12; RPH21]

Given the attacks’ quadratic costs in the number of keywords, evaluating them on TAIR was
infeasible so we only considered AOL.

IKK did not work in any of our settings. This stands in contrast to previous results which
showed high recovery rates but assuming almost full knowledge of the data [CGPR15; RPH21]
on small datasets. The best recovery rate we observed was less than 15%; even with full
knowledge of the data and in the A-H setting (all users, high frequency), which is the least
realistic setting. We stopped the attack’s annealing process after it ran for 48 hours. We
attribute this to a large search space, since the DETIKK [RPH21] attack—which has a reduced
number of states—does not suffer from this in the high-frequency setting (cf. Figure 4.5). This
evaluation suggests that DETIKK may only work in practical settings with high known-data
rates.

4.4.1.3 The Count Attack [CGPR15]

Like IKK, COUNT V.2 is also quadratic in the number of keywords so we only ran it on the AOL
query log.

In our evaluations, COUNT V.2 succeeded in all of our settings but using full knowledge of the
data. Without full knowledge, it only succeeded in the A-H setting with a recovery rate of
63% based on a 30% known-data rate. Here, the query frequency had a mean of 5707. This
aligns with the results stated in [BKM20]. However, we observed that without full knowledge
of the data, COUNT V.2 failed to achieve adequate recovery rates. For example, in the S-L
setting, it achieved 8% recovery rate even with knowledge of 90% of the data (cf. Figure 4.5
for more data points). Similarly to IKK, this suggests that COUNT V.2 may require very high
known-data rates in more practical settings.

33

4 LEAKER

"(B)ba4s 4q

uaAI3 sT Adouanbaiy ueaw Sunnsal oy, A[PAndadsar ‘93paimowy Tenred oY1 Ul paureuod osfe a1k jeys 3oy A1onb oy
ur sorranb 9A1dS79s (1) 1ses[10 (H) 1sow 0§ Y3 woty Aousanbaiy A1onb 119y 031 3urpiodde juswsde[dar noyum (v
{u10130q) SI9sn [[e 10 (S 3uras 1osn o[3urs {do1) SIS dAIIDL 1SBI] 93 JO OB I9YIIL 0] UMBIP 21k sauenb 0GT YDILLEQ pue
A LNNOD J0J SUOP SUOHBN[RAD € X € 10J 1d9dXd ‘G X § 918 SUOIIBN[RAD [[V "Y|V.L PUR OV IsUre3e SUOHIBN[RAD YOrNY :G*{ 3In31]

dIV1 uo (y) sI9sn]jp 10J uonenyeAy

(992 S = (B)ba4)) H-V

0 UI 93pa[mouY] [erIE]

ST =(B)ba1y) 1-v

0 Ul 93pa[mouy] [ented

70V uo () s1asn Jjb 10j uonenyeay

(1 =(BO)ba1y 1-v

0 UI 93pa[MOUY] [BLIIE]

(L0LS = (B)bd1p) H-V

0 UI 93pa[MOuY] [ENIE]

00T 08 09 ot 0T 0 00T 08 09 oy 0T 0 00T 08 09 oy 014 0 00T 08 09 oy (014 0
| — +— — 00 Ly : é é 00 W“ F * ¥ % v % v =+ ¥ 00 L— ! ' : c = 00
k% %k % ¥ i B = e ——
W\Twiww\www\m f TAyderdqns —— LA S 2 B2 o) / e \.H
& * L z0 arydeidqns & | 7 Lzo X + / Al
) m = / :SMZMm - - % %m = | 1A-ydeiSqng —s— qrydeiSqns —m- -
'3 % Fvo B VIATT Lyo B = m\m - Fvo B uyIoARS uvlon < |40 B
wm] g0 3 m|m H ZAMOD v~ DIIRA—*— 2
- S | o < o < <2
" I w TAydeidqns —e— | 90 Zl 90 z TAydeidqng —e— | 90 z r9o wu
ar-ydeidqng —m- g | m m% W & ar-ydei3qns = & &
UV[OA[S r 80 W ,/W r 80 UV[OA[S r 80 r 80
UV[OA —<— \W m UY[OA —+—
FO'T e+ + 5% 01 gawnod v L o'p FOT
Y|Vl uo Amv sIasn MNM:.;. 10J uoryenjeay 7OV uo ﬁmv sIasn w~%ﬁ.~w 10J uoryenjeay
(8'Tz=(0)ba2y) 1-S (9081 = (B)b34) H-S (658 = (B)b=4) 1-S (LT9T =(B)b34) H-S
0 Ul 93pa[mowy] [ented 9% Ul 93pajmowy] [enied 9% Ul 93pajmowy] [enied 9% Ul 93pajmouy] [ened
00T 08 09 oy 0cC 0 00T 08 09 oy 0cC 0 08 09 ot 0cC 0 08 09 oy (14 0
L .4 e & o 100 TR P G- : 00 %o oo ¢ o 00 —y—4—s—96_ & 6 & 100
%\ [TAydeidqng —o— H TAydeidqng —+— b w H % 1 H H L H H % % H % 1
ar-ydeidqns = | 0 i ar-ydeidqns = | 0 ik Lzo Lzo
UVIOAIRS - UVIOAIRS - TA-ydeidqng —— qr-ydeidqns = - TA-ydeidqng —— qr-ydeidqns = -
/ VAT Ly B VAT Ly B uyIoAPS uyloA—— | po 3 uyIoAPS uyloA—— 470 &
K 2 TAIUNOD ¥ IR —#— K A IUNOD v DR —#— K
Loo 31 oo 2 oo 2 oo 3
W % =] = = =
_ 2 | 2 2 2
PR T S A @ [™ ™ ™
b et e e
FotT W\W\\W\ - Lot [. | o1 F 2 44— Lot

*(3y31r) Juswadedar Yum
Gurpduwres pue (3j9) suondLIsal oyum 3urdures
[[NJ I0J SI9SN OV DAIDR 1SBI § I WoJJ saLanb
Aouanbaij-1somof uo [OZIADId] JO Uonenyeas G x G 44 2In3ig

0 Ul 93paymouy [enteq 9% Ul 93paymouy] [enIed

00T 08 09 oy (4 0 00T 08 09 oy (04 0
—— ’ 9 00 —————0—o ¢ 2¢ 00
- I é +
1 - .
% [eo || 1A-ydesqng —e— [eo
[B ar-ydei3qns - 7
—— S rvo g] UV[OA[PS rvo g
| T 3 UYOA —+— 3
I \ L o0] | L o0 <
TA-ydeidqng —e— Z|) z
- qrydeidqng = 81 a3
- UyJoAlRS r80 I — T r80
UY[OA —¢— bé = — L 1
For | Lo

‘|'eIND 10J ZA LNNOD Palen[eAd
Iasn auo ATuQ *(3y31r) aALQ pue (3J9]) JIeWD uo
(Bumias 1asn-a[3urs pue ‘suonmnadsr ou ‘urd
-wies A19nb [[ny) suonenfeas eiep ageaud ¢ x ¢ gy 2anSig

9% UT 93pa[mouny [enieq 9% Ul 93paymowy [ented

001 08 09 ot 0T 0 00T 08 09 ot 0T 0
L L L 1 L 00 L e [— e 00
-co -co
B TA-ydeiSqng —o— B
rvo m ar-ydeidqng —s- rvo m
_ 5 UV[OARS]
F90 ,mu UY[OA —%— F90 ,wu
TA-ydeSqng —o— 7 cAINOY v &
ar-ydeidqns @ 80 H k*vﬂ L g0
uyIoARS mxym T
UV[OA—— L 0T FO0T

34

4 LEAKER

4.4.1.4 The BKM Attacks [BKM20]

The BKM attacks were efficient enough to evaluate on all of our query logs. We provide our
results in Figure 4.3 and Figure 4.5 and detail our results for each of the attacks below.

The Subgraph framework. Against our private dataset (Figure 4.3), both attacks did
surprisingly well. For the email case, more than 18.75% of the real-world queries are
recovered with knowledge of only 5% of the data.® Though the private dataset had a very
small number of users, we did observe that the recovery rates of the Subgraph attacks on
the Gmail data were very consistent across users and always greater than 18.75%. On the
Drive dataset, the attacks achieved a much lower recovery rate with low known-data rates;
however when 35% of the data is known, both attacks recovered half the queries.

In the public data setting (Figure 4.5), both SUBGRAPH attacks also achieve non-trivial
recovery rates. For high-frequency queries, SUBGRAPHVL achieves very high recovery rates
almost independently of the known-data rate and of whether the queries come from a single
user or aggregated users. SUBGRAPHID, however, has a slightly lower but still significant
recovery rate: 86% in the S-H setting for AOL with known-data rate of 10%. For low-
frequency queries (.-L), both attacks still perform well for an average frequency as low
as freq(Q) = 4.85 (cf. Figure 3 in Section 7.1.1). For very low frequencies (freq(Q) = 1),
however, we found that SUBGRAPHVL does not work at all, while SUBGRAPHID can still
correctly recover queries at a low but significant rate (cf. Figure 4.5). This is in contrast to the
original evaluation of the attack [BKM20], where queries with frequency 1 (sampled from the
data collection) could not be recovered. This again illustrates the value of using real-world
query logs for evaluations as it can uncover new settings in which existing attacks work.

In Figure 4.4, the queries are fully sampled from the query logs and we allow for repeated
queries. We noticed that: (1) the variance of the recovery rate increases; and (2) the recovery
rate of SUBGRAPH is reduced by about 40% if we allow for repeated queries. Both attacks
achieve lower minimum recovery rates—around 40% for 10% known-data rate—whereas
their median recovery rate drops to similar levels for all known-data rates if queries repeat.
We can see that the recovery rate is affected by full sampling and repeated queries but remains
significant in all cases. The attacks also work slightly better even with lower known-data
rates on AOL compared to our private datasets (Figure 4.3). A possible intuition why these
attacks may work better than others is that they rely on atomic leakage concerning individual
documents. This difference could be because AOL has significantly more users but we believe
more data is necessary to confirm this.

Total volume attacks. Compared to the SUBGRAPH attacks, the VOLAN and the SEIVOLAN
attacks achieved significantly lower recovery rates in the private data setting. More precisely,

8Given that email data often contains public information such as updates and spam, we consider a 5%
known-data rate to be realistic.

35

4 LEAKER

Table 4.5: Normalized mean errors on the entire SDSS query logs. The collection is sam-
pled 25x uniformly at random with size n = 10% (n = 10° for APA and ARR).

Instance GKKNO AVALUE ARR ARR-OR APA-ORBT APA-ORABT

SDSS-S 0.413 0.432 0.473 0.249 0.242 0.239
SDSS-M 0.408 0.435 0.287 0.128 0.242 0.240
SDSS-L 0.417 0.456 0.286 0.141 0.241 0.242

they only achieved 20% recovery rate on the GMail dataset even with 75% known-data
rate (see Figure 4.3).

We also noticed that the attacks did poorly in the public setting considered in Figure 4.5.
For high-frequency queries, they needed almost perfect knowledge of the data to achieve an
adequate recovery rate. Specifically, at least 70% of the data needs to be known in order to
recover more than 7% of the queries in the S-H setting. For very low frequencies, none of
the attacks worked with less than 100% known-data rate. Therefore, based on our datasets,
we only consider them to pose a risk for very high known-data rates, though this may not
necessarily generalize to all cases.

4.4.2 Range Attacks

Range Attack evaluations have primarily been performed on random databases or on multiple
columns of a restricted set of real-world databases using artificial query distributions. Many
attacks are concerned with full reconstruction, and hence the approach has been to evaluate
a lot of instances of small-scale databases found in a data source. So far, the approach for full
reconstruction range attacks has mainly been to evaluate the success probability (or error)
over a lot of instances of small-scale databases from a data source, given the theoretical
minimum of queries. We ran our evaluation against the numerical datasets described
in Section 4.3.2.

Our results are summarized in Table 4.5 and Figure 6. Similar to our keyword attack
evaluation (Section 4.4.1), we first describe the main parameters that impact accuracy as
well as our experimental setting, and then proceed to a high-level description of our results.
If an evaluation point is not shown in any of the tables or figures in this section and unless
noted otherwise, we aborted it due to unacceptable runtimes.

Query distribution. This captures how a user queries its own dataset. For the SDSS dataset,
we were fortunate to have access to both the query log and its corresponding data collection.
For datasets with no available query log, we had to consider synthetic query distributions.
Previously considered query distributions include the uniform distribution and instances of the
beta distribution [KPT20; KPT21]. Given that none of these distributions are supported by real-
world query logs, we introduce a new distribution we call the truncated Zipf distribution which
has some of the basic properties of the distributions we observed in SDSS (cf. Section 7.2.2.3).

36

4 LEAKER

To summarize, this distribution is a variant of the standard Zipf(a, N) distribution where we
fix a to be 5. It also has two additional parameters: the maximum width B, and the fraction f.
The former removes any range that has width larger than B, and the latter ensures that only
a fraction f of possible ranges occur. We denote this new variant of the Zipf distribution
TZipf(B,), where the distribution parameter a is always 5, the maximum window size of a
query is B, and a maximum fraction of f of all unique queries can appear. We varied both B
and f in our experiments and found that B can have a significant impact on recovery rates.
Thus, we present results for a (relatively) small B and a (relatively) large B, and set small
fractions of f that still give us a meaningful query space (20% for small, 2% for medium and
large and 0.2% for very large collections).

Amount of queries. For the SDSS dataset(cf. Table 4.3), we did not sample the query logs
and, instead, attacked the entire query logs, see Table 4.5. For the other numerical datasets,
however, we sampled varying amounts of queries (10% to 10°) with replacement.

Characteristics of the data. The datasets we use and that are described in Section 4.3, have
different characteristics and properties which allows us to assess attacks in different scenarios.
We recall some of their basic properties here (more details are provided in Section 7.2.2.1):
the medical dataset, MIMIC, and the insurance dataset, Insurance, are skewed towards low
values with just a few high-value outliers so we refer to them as uneven distributions, whereas
entries in the human resources dataset, Salaries, and the sales dataset, Sales, are spread
more evenly across the domain range so we refer to them as even distributions.

Data distribution. Through our various data collections, we also investigated different
data distributions. Though we cannot show the exact distributions due to access restric-
tions, we note two major properties here: (1) MIMIC-T4 has a dense subset including all
values in {1,...,42}, whereas such continuous dense subsets are not found in other collec-
tions. (2) MIMIC and Insurance are skewed towards low values with just a few high-value
outliers, whereas entries in Salaries and Sales are spread more evenly across the domain
range (the Sales distribution is almost uniform).

Data density and size. Other basic properties are the size of a dataset and the density of
an attribute/column of dataset. The size refers to the number of records in the collection and
the density of an attribute/column is the ratio of unique values in the attribute/column over
its domain size. Note that the size of that n can be larger than N (cf. Table 4.3 and Table 4.4)
We recall that the medical dataset MIMIC-T4 is much more dense than the other datasets.

37

4 LEAKER

Errors. These errors are a general indicator and enable comparisons across instances,
though the severity still depends on the use case. For instance, a 10% error on salary data
can already give a clear indication of income whereas a 10% deviation in a medical test result
can alter a conclusion from clinically inconspicuous to noteworthy. Concerning database
reconstruction, we use the normaliged mean absolute error (MAE):

12“: |DBi]—DB[i]|
n < N '

We noticed that due to the low density of our databases, the count reconstruction attacks fail
at identifying values that do not occur in the database. Though this already shows that these
attacks will not perform well in such real-world scenarios, we use a more meaningful error
to highlight whether density is the issue at hand, or if the attacks also fail to uncover the
counts of values that do appear. We call this the normalized mean count error (MCE) based
on S = sorted ({e ‘e € DB}) with cardinality m:

1< 1_ min(|DB(S[i])I, C[i1l)

m& ax(pB(S[iD), LD

which indicates how far off the count reconstruction is, e.g., on average 10% off the original
value. We always report errors up to reflection (cf. Chapter 3).

Experimental setting. Contrary to the keyword attacks we evaluated which were all query
recovery attacks, the range attacks we consider are all data recovery attacks. To measure
success’, we use a normalized mean absolute error. This error is a distance measure equal to
the mean of the normalized differences between the true and recovered values. For count
reconstruction attacks, we compute the error between the sorted values, i.e., independent of
the order. To make this difference clear and comparable to all attacks (disregarding order
information), we add the suffix -OR in the plots for these cases. As a reference, an error
close to 0.5 means that the attack does not work, while one close to 0 is synonymous to a
practical attack. Every attack is evaluated several times and we report the mean, maximum,

and minimum error.

Our SDSS evaluations cover realistic settings by attacking the collection with leakage observed
from real queries by real users. For the other datasets, we made assumptions about the
query distributions, rooted in observations about the real SDSS queries. Of course, other
distributions might be encountered in realistic conditions, but this allowed us to observe
interesting effects of the different data properties under query distributions similar to ones
that have been observed in a real system.

“We use the same machine as in the keyword case. Every range attack is evaluated against all datasets and
all query distributions.

38

4 LEAKER

"VdV PUB WYYV ‘dINT "dsa1 TVAXO¥ddy pue ONDDINED 10j pauriojiad a1om suonesaln [“dsal 1 *s1010ej
YSII SB paynIuapI (1°Z°Z’Z UOMIS ‘I' UONDIAS 'Jo) UOINGLIISIP BIBP [BISUS SJaseiep aAndadsar oy apnpur suonde)
‘uonnqrnsip jdiz paeouni) e Suisn s19seIep JUDIIJIP UO SHOBIIB UONDINIISUOIII SNBA JO I0IId 9IN[OSqE UBIW PIZI[eULION :9 NS

(§ =0T =1 ‘uUonNQLIISIP BIBP UDASUN) 3DURINSU| (§z = [0S =1 ‘uonNNQLIISIP BIBP UIAI) S9jeS
(2000 ‘ST ST)idizL (200°0‘0001)3d1ZL (2000001)3d1Z1 (200001)4d1ZL
SN # SLPN)# SLPNO # saLPNO#
0T 4,01 0T 4,01 0T .01 0L 4,01 0T 0T
" & OO L L m\\m\\ - L OO L L L L OO
o l/ﬂfmu\,\ m 1o
i OV — 58— &
— FTo 1HOVaV o Lzo + %
:) = o MOV —4— = T =
1O VAV & | o 2 g MY -8- g0 8 LaydOVaY & Leo 8
1gd0-VdV —e— anjepxoxddy T+ = -+ 1gd0"VdV —o—
AO-HdY ¢ . 1 ONDDIUSD <+ R HO-HUV —4— .
oy = i F¥0 WAV - i F+0 (—— 5 I+ RErer F+0
onfeaxoiddy e——=_ <= anreaxoxddy 6 + + T + + 1 7 sneaxorddy = = &
ONDDIURD —— rso ONDDIUD —— rso S0 17 Onopmuen T Trso
(ST = [0S = 1 ‘UONNqIISIP BIEP UIAI) SalIeles (0T = {07 =1 ‘UONNQLUSIP BIEP USASUN) YID-DINIW
(T0°s6e)dizL (z'0‘00T)4diZL (2000001)d1Z1 (zo0°00T)d1ZL
saLRNQ# souRNQ# soLRNQ# souRNQ#
(0T 4,01 0T 4,01 0T 01 0T 4,01 01 01 0T 4,01 0T 01
- : ! ! ! =00 —_— L 00 M, e ————
B G T T
% 4 —TtT0 FT0 FT0
< k F F20 A T A
1av¥OVAY &] " E&oé%*#JJf e - ¥ g 8
L OVdV o il =TE0s me0.§<¢% | % Lre0s r€o= reo=
HOWEY o . MOWMV -+ L x|] .
T F+'0 vt =—=F R4l Fv'0 Ft'o
anfeaxoxddy anjeaxoxddy anfeaxoxddy anfeaxoxddy
ONDDUSD —— rso ONDDUSD —— rso ONDDUSD —— rso ONDDIUSD —<— rso
(0T = [“0g = 1 ‘uONNQLUSIP BIBP U2AIUN) Dd-DINIW (0T = [‘0g =1 ‘@suap ‘WONNGLUSIP BILP U2AUN)]-DININ
(2o'0‘0001)4d1ZL (zo000T)d1zL (T0‘eL)dizL (zo‘oTydizL
saLRNQ# souaNQ# sauRNQ# sauaNQ #
0T 4,01 0T 01 01 40T 0T 01 0T 40T 0T 01 0T 40T 0T 01
100 L L S 00 e ——m 1] ! : ’ 00
T " = % X - X =+ L hd —3
T) h F 10 H/,/ﬂ F 10 - F10
1 1 1/ i + g
Ltzo A % A — 1 W /w, —% 2o
B B ¥ B s] 5
% FE0 S| 1 T reo s anjepxoxddy reo 8 reo s
+ ONDDIURD —— 3 anjepaxoxddy .
7o DA ddy-aNT v rvo ONDDIUDD % o
anreaxorddy anfeaxoxddy ATdINT —— AIdINT —# © T I
ONDDIURD —— rso ONDDIUSD —— rso ME-dINT rso MU-dINT rso

39

4 LEAKER

4.4.2.1 The (G)LMP Attacks [GLMP18; LMP18]

As expected, the LMP [LMP18] attacks were successful on MIMIC-T4, which is dense, under
uniform queries. Yet, all LMP [LMP18] attacks failed completely across all other instances,
including SDSS dataset. This is because all this data is non-dense, and the attacks even fail
under the uniform distribution.

However, there are MIMIC-T4 instances that do not fail under the TZipf distribution. Instead,
they exactly uncover all values within the dense subset {1,...,42}, but assign incorrect values
to the outliers, they achieved very small error rates (e.g., LMP-RK achieves a 0.0003 error
rate) because the outliers represent a tiny fraction of the data (around 0.37% of all values).
We thus consider the attacks to only be applicable if the database is very dense. If the attacks
output the reflection, the error is significantly larger. Based on our experiments, as predicted,
we consider LMP as risky if the data is dense.

The GLMP [GLMP18] attack, which is a count-reconstruction attack, achieved perfect recovery
on MIMIC-T4 if we disregard density.'® This occurred with 10> queries from a truncated Zipf
distribution with B = 73 and f = 0.2. The attack failed on the other datasets, While it finds
solutions, they are assigned to the wrong values. As such, we believe that GLMP succeeds
if the collection is completely dense and the query distribution is uniform, though similarly
to LMP this may not necessarily generalize to all cases. Furthermore, if we disregard density,
the correct counts are almost exclusively only found with a uniform query distribution (the
only exception is for 10° queries under TZipf(73,0.2) for MIMIC-T4). We do not consider it to
work under real-world conditions.

4.4.2.2 The GJW Attacks [GJW19]

With the exception of the Salaries case, both GJW-BAsic and GJW-MISSING suffer aborts
due to an infeasible search space larger than |{r € rlen} |>. More precisely, for Salaries, the
recovered counts were always completely incorrect when queries are sampled from TZipf,
and while the correct counts were uncovered for a uniform distribution for 10° queries, they
were assigned to the wrong values due to the low density. Similarly to GLMP, we do not
consider them to work under our real-world conditions, though this may not generalize to all
cases.

4.4.2.3 Approximate Reconstruction Attacks [GLMP19]

Though the GENKKNO and APPROXVAL attacks of [GLMP19] were explicitly designed to
work with uniform queries, we still evaluated them using our SDSS data collections and
query logs. As expected, they failed to recover any meaningful data, achieving an error of at

19Running the attack on a collection that has been made completely dense by removing values that do not
occur from the collection’s universe.

40

4 LEAKER

least 0.41 (cf. Tab. 4.5). However, and perhaps surprisingly, we did find that both attacks
achieved significant recovery rates when queries were sampled from the truncated Zipf
distribution (cf. Figure 6).

We identified two settings where GENKKNO succeeds with a truncated Zipf: (1) when it has
relatively large B; and (2) when the data is skewed towards lower values as is the case in
MIMIC and Insurance, where it even succeeds for a small B. Note that there was an exception
to (1) which was when we evaluated it on the Sales dataset. Generally, we believe (1)
holds because queries with large width are more likely to cover values close to one of the
endpoints (1 or N), which is required to determine the global reflection (i.e., whether the
value belongs to the first or second N/2-half of the domain).!! For (2), we believe that
the skewness of the values in a dataset helps to easily determine one of the endpoints, and
therefore the global reflection. This is not the case for Sales, where the probability of hitting
any value is almost uniform, as seen by an error larger than 0.4 for B = 100.

The same holds for APPROXVAL, under the additional condition that specific values have
to be present in the collection. Namely, the attack assumes that at least one value in the
dataset is in the range [0.2N,0.3N] or its reflection to find its anchor. Though this is true
for all data collections, the fraction of such records is much lower for MIMIC-PC (0.03%)
and MIMIC-CEA (0.4%) than the others (> 2.9%), which are exactly the cases where it has
much worse and unpredictable performance compared to GENKKNO with a maximum error
equal to 0.49 for 5000 queries, see Figure 6.

4.4.2.4 The KPT Attacks [KPT20; KPT21]

Contrary to the previous attacks, these attacks achieved low error rates on the SDSS data and
queries but were computationally demanding since they have to solve non-convex or nonlinear
optimization problems with solution size n + 1. This computational overhead also meant
we could not evaluate them on our MIMIC datasets. We also had to rely on SciPy [VGO™20]
instead of the original MATLAB optimization to meet our open-source goals (cf. Section 4.2).
In the following, we give more details on attack performance.

ARR and ARR-OR. Recall that ARR-OR requires the order as an input which is not the case
for ARR. ARR-OR reconstructs with error rate 0.15 in almost all of our settings but standard
encrypted ranges schemes do not leak the order [FJK*15; DPP*16]. In our experiments, ARR
only came close to ARR-OR’s performance when queries were sampled from truncated Zipf
distributions with large B.

This includes SDSS, where ARR-OR is the only attack to succeed in attacking a real-world
query log. While the error is still high (0.249) for SDSS-S containing only 215 unique
queries, the error drops to 0.128 for SDSS-M containing 5.6k unique queries (cf. Tables 4.3

This is not the case for the SDSS logs, also diminishing accuracy.

41

4 LEAKER

and Table 4.5). This stands in contrast to ARR, where no significant SDSS information is
uncovered.

For the other datasets, ARR-OR achieves low errors even for just 100 queries and low maximum
query widths B, see Figure 6. Thus, as order is usually not leaked, the ARR attack is sensitive
to the order reconstruction of APPROXORDER [GLMP19], which diminishes performance for
low B.

We also note a peculiarity of ARR against Insurance, where the error rate with 103 queries was
significantly larger than with 100 queries. This stems from slightly overestimating distances
between entries with the same, low value making up almost half of the collection (cf. Figure 1
in Section 7.2.2.1). We believe this to occur for more queries as they yield more possible
results outside this specific, low value, thereby decreasing the weight for its result set, which
consequently enables a low yet cumulatively significant error. the error btwn ARR/ARR-OR
does not matter here as it is just caused by the order permutation

APA. Since APA [KPT21] is parameterized by the underlying range scheme, we show results
for the state-of-the-art schemes [FJK"15] and [DPP*16]. Also, APA recovers ordered values,
whereas no attack uncovering the order based on this leakage profile is known. In general, APA
is the only range attack not utilizing rid that can uncover significant information outside
the case of dense data and a uniform query distribution. This was not the case for GLMP
and GJW that also do not rely on rid (but do not need geq).

Although APA only achieves an error rate of about 0.24 on the SDSS data collection and
queries, it performs well on other datasets and with various query amounts and query widths.
It is sensitive, however, to the data distribution. In particular, while it achieves an error rate
of 0.06 on Salaries and of 0.15 on Sales, it had an error rate of 0.45 on Insurance.

For the latter case, the found solutions greatly underestimate large value distances while
they are more accurate in the former case on an even data distribution containing smaller
distances, which we thus see as a risk factor for APA. The impact of using different range
schemes seems to be insignificant.

4.4.2.5 Evaluation on Real-World Query Logs

We present results on attacking SDSS in Table 4.5. Additionally, we ran the LMP attacks
but had to abort all of them due to significant runtimes before any results were uncovered,
with the exception of those on SDSS-S, where all attacks failed to find a solution. The count
reconstruction attacks of [GJW19] similarly all abort due to a prohibitive search space, and,
while not aborting, GLMP18 is never able to find a solution.

The remaining results show that GENERALIZEDKKNO and APPROXVALUE of [GLMP19] com-
pletely fail. GENERALARR struggles as well, but improves over [GLMP19]. Significant
reconstruction is only achieved by GENERALARR-OR, giving us an answer to question 1)

42

4 LEAKER

1.04 I —aGLMP18 109% _+ GLMP18 1014 ——%4+——+—4 +» GLMPI8 10— 4%+, GmPI8
084 0.8 { 0.8 +| 08
~— e
. 0.6 L 0.6 L 0.6 L 0.6
2 2 g g
= 0.4 = 0.4 = 0.4+ = 0.4+
0.2+ S 0.2+ 0.2 0.2 4
0.0 4 Sa o0 0.0 4 0.0 4
10 10° 10 10° 10? 10° 10 10° 10? 10° 10 10° 10? 10° 10* 10°
#Queries #Queries #Queries #Queries
* = Uniform x = TZipf(73,0.2) * = Uniform x = TZipf(1000,0.02)
= MIMIC-T4 (i=3) = MIMIC-PC (i =3)
L ————+3 civris Lo ————F——3 , civris
0.8 0.8
w 0.6 0.6
£ £
= 0.4 = 044
0.2 0.2
0.0 0.0
10° 10° 10 10° 10° 10° 10 10°
#Queries #Queries
x = Uniform x = TZipf(1000, 0.02)

£ = MIMIC-CEA (i = 3)

1.0 fF——F—+—% 1.0+ —% —% * 10 H——ma b —4 10—
\ —% ~
A\ } 3
0.8 VNN 0.8 0.8 0.8+ ~—
\ 3
~ o.sl f l —X \ L 0.6 } f 1 f L 06 06
£ \ £ g g
= 044 N 04 = 0.4 = 0.4
0.2 | 02 —~-GLMP1S 0.2 024
—4- GLMP18 \ —#— GJW-Basic
0.0 GiW-Basic \ 0.0 = GIW-Missing 0.0]+ GLMP18 0.0]+ GLMPI8
162 12)3 1(3“ 163 162 12}3 15“ 163 162 163 16‘ 165 12)2 163 16‘ 165
#Queries #Queries #Queries #Queries
x = Uniform * = TZipf(395,0.2) * = Uniform x = TZipf(1000,0.002)
i = Salaries (i = 10) ¥ = Insurance (i = 3)

Figure 7: MCE of count reconstruction attacks on ¥ using a * distribution. i displays how
many iterations were performed.

of Section 4.4.2: so far, our real-world query logs can only be attacked if in addition to rid
and geq, the order is known to the adversary, e.g., if PPE is used. Otherwise, GENERALARR
improves over [GLMP19] but still fails at reconstructing information we deem significant.
One underlying reason is the identification of repetitions (cf. Section 7.1.3): with the ap-
proximated order, only a maximum mean of 8.27% of repetitions is identified for SDSS-L,
whereas GENERALARR-OR identifies a maximum of 67% for SDSS-L. Note here that the size
of the log increases this percentage, as it is only 0.08% and 2.48% for SDSS-S with the
approximate or exact order, respectively. This is not visible in Table 4.5, because errors easily
propagate due to recovery being based on uncovering distances between entries. Additionally,
some repetitions of GENERALARR are false positives, but none are observed if the order is
leaked. While ARR accomplished reconstruction agnostic to the query distribution, their
reliance on APPROXORDER hinders performance, giving us an answer to question 2). We thus
identify a query distribution agnostic order reconstruction attack to be important future work.
in order to provide a first attack that performs well on real-world data.

43

4 LEAKER

4.4.2.6 Evaluation on Real-World Databases

Our value reconstruction evaluation on varying distributions and real-world databases is found
in Figure 6. Though we also evaluated these attacks on the quite unrealistic uniform query
distribution, we notice that depending on the parameters of TZipf, attacks uncover significant
information. Therefore, we vary these parameters: For small databases, we assume that a
considerable fraction of possible queries (20%) can occur, while this fraction is significantly
lower for larger databases (2% for medium and large, 0.2% for very large databases). For
each database, a rather small and a rather large window size limit is considered. We do
not show any LMP results because the attacks consistently fail even for a uniform query
distribution.

On the contrary, count reconstruction attacks fail to uncover significant information for TZipf,
except if the window size limit is large. We thus display performance for the uniform query
distribution and TZipf with a very large window size limit in Figure 7. For the uniform case, we
evaluate GLMP18 and GJW19-Basic'?, while for TZipf we also investigate GJW19-MISSING,
given that it was designed for the case that queries are missing. We do not show the plots
for MIMIC-PC, MIMIC-CEA, Sales, and Insurance, as no significant information is uncovered
even for the uniform query space (MCE > 0.8 for GLMP18; aborts for GJW).

We conclude for the remaining dimensions of Section 4.4.2:

Query Distribution. As expected, attack performance can heavily depend on the query
distribution. Value reconstruction attacks (cf. Figure 6) often uncover significant results for
the more realistic restricted TZipf distribution. There, they work very well for a small fraction
of possible queries and a large window size limit, though there are cases where even a small
limit suffices (see 4) below). In particular, the attacks of [GLMP19] frequently decrease
errors for larger window sizes, while GENERALARR-OR remains unaffected. The performance
of GENERALARR-OR is only matched by GENERALARR for large windows. Noteworthy are GEN-
ERALIZEDKKNO and APPROXVALUE of [GLMP19], which are performant even though they
were specifically designed for a uniform query distribution. Note, however, that for MIMIC,
these attacks generally have a small error as they tend to reconstruct small values, but do
not recover outliers (cf. 5) below). Nonetheless, even for a restricted Zipfian distribution,
these attacks can perform well if the window limit size is large. It remains open how realistic
this setting is because the purpose of outsourcing a database is negated if a large fraction
of it is queried. Therefore, risk needs to be determined on a case-by-case basis, possibly by
using LEAKER.

For the count reconstruction attacks (cf. Figure 7), we notice a more extreme pattern: Sig-
nificant information can only be uncovered under the unrealistic uniform distribution with
small databases, with an exception for GLMP18 on Salaries and TZipf with a full window
size limit. Recall that the MCE does not consider counts for values that do not appear in the

120ther attacks of [GJW19] are designed for specific cases of query behavior not suited for the uniform query
distribution.

44

4 LEAKER

database, and that all these attacks failed at uncovering the counts for the actual values in
these non-dense databases.

Amount of Queries. We observe that the amount of issued queries can matter. For value
reconstruction attacks, the effect is mostly noticeable for GENERALARR: With more queries, our
identification of repeating values becomes more accurate (mostly perfect for more than 10*
queries) and significantly reduces the error. The [GLMP19] attacks display no such deviance.
In count reconstructions, a small error is only possible for a large amount of queries.

Data Distribution and Size. The LMP attacks fail even under a uniform distribution due
to the low density. Other value reconstruction attacks fare much better with this. How-
ever, APPROXVALUE assumes that specific entries exist in DB (at least one in [0.2N,0.3N] or
its reflection) to find its anchor values. Though this is true for all databases, the fraction of
such records is much lower for MIMIC-PC (0.03%) and MIMIC-CEA (0.4%) than the others.
This is reflected by much worse and unpredictable performance of APPROXVALUE compared
to GENERALIZEDKKNO in these databases.

Furthermore, we note major differences depending on the DB value distribution: MIMIC
and Insurance are skewed towards low values occurring frequently with just a few high-
value outliers, whereas entries in Salaries and Sales are spread more evenly across the
domain range. The [GLMP19] attacks work well in the former cases even for small windows,
whereas GENERALARR requires many queries to work in the former but not in the latter
cases. This is especially noticeable for Sales, which has only one repeated value, i.e., a rather
uniform frequency distribution. There, [GLMP19] fails completely while GENERALARR is
accurate.

For value reconstruction, the database size does not have much influence, but GENERALARR
has computational constraints for large n (MIMIC-T4) or N (Insurance).

The count reconstruction attacks fail to assign the counts to the correct values if the data is
not dense. Otherwise, they can uncover the correct counts for some small databases but are
not feasible for attacking larger database instances.

Leakage Profiles. Different to the keyword attacks, it becomes clear that significant leakage
is needed to attack range databases in realistic settings. Attacks that have some successful
recoveries in the more realistic TZipf setting require rid, and to achieve the more consistent
accuracy of GENERALARR-OR, the leakage profile must also include geq, order. The count
reconstruction attacks relying solely on rlen do not work in a realistic setting.

45

5 MAPLE

As far as we know, the IHOP attack of Oya and Kerschbaum [OK22] was the first leakage
attack to exploit possible query dependencies. *

At a high level, this is done by modeling the client’s query distribution as a Markov process and
formulating a quadratic optimization problem that is a function of the transitions between
observed queries given by the query equality pattern and of transition probabilities given
as auxiliary information. The optimization problem is then solved with a linear assignment
solver. In comparison, our attacks leverage stochastic techniques that can be applied in the same
setting. In this work [KKM™*24], we also propose attacks that exploit the query equality of
dependent query sequences but our techniques are different. In contrast to [OK22], we model
the observed query equality leakage on a dependent query sequence as the output of the
observable process of a hidden Markov model (HMM). Our model allows us to make use of
sophisticated HMM inference techniques to recover the query sequence. As we demonstrate
in our evaluations, our proposed attacks can significantly outperform the IHOP attack. In
contrast to [OK22], we model the observed query equality leakage on a dependent query
sequence as the output of an HMM. Hence, we capture not only the query distribution but
how it interacts with the qeq pattern as well, which allows us to use more sophisticated HMM
inference techniques to recover information about the query sequence. As we demonstrate in
our evaluations, this can significantly outperform IHOP.

The evaluation of [OK22] in the query-dependent setting uses both the sampled-data (the
first half of the data source is test query data and the second half training auxiliary data)
and the known-data (test and train data are equivalent) auxiliary knowledge. It does not
use a query log but relies on the Wikipedia Clickstream dataset, which provides statistics
of users’ transitions between Wikipedia pages. These pages (and not the keywords filling
them) correspond to keywords in their setting. In contrast, our evaluation uses real-world
query logs that encompass queries from real keyword query systems. Furthermore, in their
evaluation the keyword universes of the auxiliary attacker knowledge and the user’s queries
are equivalent [OK22]: First, a keyword universe of the 500 most well-connected keywords is
created. Then, transition probabilities between these keywords are filled using the respective
dataset (adversarial training or user test data). This ensures that each keyword the user
queries for is in the attacker’s knowledge. We however use a different approach where the
keyword universe stems directly from the auxiliary knowledge given to the attacker, thereby not

!While this work focuses on the setting where queries are dependent, the IHOP attack as well as our attacks
can also be evaluated when queries are sampled independently.

46

5 MAPLE

ignoring keywords with a low connectivity and not ensuring equality of the keyword universe
known to the attacker and that of the user.

5.1 Stochastic Processes

The majority of leakage attacks work in a setting in which queries are drawn independently
from the client’s query distribution, Q. As discussed in the introduction, the independence
assumption is very strong and likely does not hold in practice. Furthermore, it is not clear
how dependency would impact the recovery rate of existing attacks. 2 In this work, as in
[OK22] we assume that the client’s queries are dependent. More precisely, we assume that
the client’s query sequence is sampled from discrete stochastic process with a well-defined
dependency structure. A discrete stochastic process is an ordered set of random variables
that are indexed using some countable set S (e.g., the integer set N). One can define various
forms of dependencies between the random variables but in this work, we focus on Markov
chains, and leave extending our results to different types of processes as an interesting open
question. Markov chains are a natural choice for modeling dependency in query distributions
as illustrated by the fact that they are extensively used in the context of information retrieval
and natural language processing [Pea05].

Markov chain. A Markov chain is a stochastic process composed of an ordered set of random
variables which verifies two main properties: the Markov property and the time-homogenous
property. The former means that the output of the nth random variable, X,,, in the stochastic
process only depends on the output of the previous random variable, X,,_;.> The latter means
that the likelihood of any two consecutive random variables outputting the same pair (i, j) is
fixed. We provide a formal definition of Markov chains below.

Definition 5.1.1 (Markov chain). A stochastic process © = {X, € {1,---,#S} : n=0}ona
countable set of states S is a Markov chain if for any n = 0, the following two properties hold,

* (Markov property): for all iy, - ,i,,j€{1,---,#S},

Pr[Xn+1 =] |X0 =1lg,,Xp = ln] :Pr[Xn+1 =] |Xn = in]:

* (time-homogenous property): for all i,j € {1,---,#S},

1:)r|:Xn+2 :j |Xn+1 = i] = PrI:Xn+1 :j |Xn = i]-

2Note that the impact of query dependency on the recovery rate of existing attacks is an unknown. In
particular, revisiting existing attack with the assumption that queries are dependent (instead of independent) is
non-trivial and would require a massive effort. We would leave it as an interesting open problem.

3There is a natural generalization of the Markov process where the output of the nth random variable depends
on the previous k € N outputs. This is why the above process is often called a first order Markov process.

47

5 MAPLE

The output of a random variable in a Markov chain is usually referred to as a state. And
an instance of a Markov chain can be viewed as a series of transitions over a finite number
of states. We sometimes refer to a Markov chain instantiation as a realization. Markov
chains can be defined using only two parameters: (1) a transition matrix; and (2) an initial
distribution. The transition matrix captures the probability of transitioning from a state to
another whereas the initial distribution captures the probability of landing in a given state at
the beginning of the process. In the following, we define these two parameters.

The Markov property characterizes a dynamic stochastic process in which the future state
depends only on the present state and not on any previous state. This is also called a first
order Markov chain, which we focus on in this work.* The second property captures the fact
that the probability to move from a state to another is independent of time and will be fixed
in the entire process. There are many examples of Markov chains, like random walks [Pea05]
or the gambler’s ruin [Coo09].

Definition 5.1.2 (Markov Chain Parameters). A Markov chain © on a countable set of states S
is characterized by two parameters:

* (transition matrix): is a square matrix T = (T, ;); je[#s] that verifies for alln > 0

Ty =Pr[Xp=j|X,=i] and Z T =1
Jjel#s]

* (initial distribution): is a vector u of size #S such that for alli € {1,--- ,#S},

p; =Pr[Xo = i].

In the subsequent parts of this paper, we write © = (T, u) to denote a Markov chain ©
parameterized by the transition matrix T and the initial distribution u. Given a transition
matrix of size n X n, we often refer to the set of indices {1, - - - , n} as the states of the transition
matrix.

Query distribution. In this work, we consider the setting where the query distribution is
a Markov chain. In particular, given a Markov chain © = (T, u), the states of the transition
matrix correspond to the query space W. More formally, this correspondence can be captured
by a bijection g : W — {1,---,#W]} that maps every keyword to a state. For simplicity,
we assume that g maps the ith keyword in W to i. The values of the transition matrix T; ;
correspond to the probability of querying keyword w; knowing that the current query is
for the keyword w;, for some i,j € {1,--- ,#W}. The initial distribution u is a vector that
captures the probability of querying any keyword w € W at the beginning of the process.

*We can in general define an m-order Markov chain such that Pr[X,,; =j | X
j |XH]'

’Xn] = Pr[Xn+1 =

n—m+1>"""

48

5 MAPLE

5.2 Statistical Inference Attacks

5.2.1 The Stationary Attack

In this section, we describe our first attack, Stationary. We would like to highlight that the
main goal of this attack is to serve as a warmup for our main attack, Decoder. In particular,
the Stationary attack shows how one could recover the query sequence solely based on the
knowledge of the stationary distribution of the auxiliary Markov chain. The attack can be
thought of as a frequency attack as it does not leverage the dependencies between queries
beyond what is implicitly included in the stationary distribution. We describe the Stationary
attack as a known-distribution attack in the sense that it requires the adversary to know the
exact query distribution in form of a query transition matrix, but we will show in Section 5.3
how we can use this attack as a building block to design a known-sample attack. Before
describing our attack, we describe two fundamental notions of Markov chains which are: (1)
the notion of stationary distributions; and (2) the average number of visits.

Stationary distribution. A stationary distribution is a probability distribution that captures
the probabilities to be at any given state independently of the initial distribution of the
Markov chain. In other words, if the stochastic process runs for a long period of time,
then the stationary distribution captures the fraction of time spent in a given state. From a
mathematical standpoint, the stationary distribution 7 is a row matrix that remains the same
even when multiplied by the transition matrix of the Markov chain.

Definition 5.2.1 (Stationary Distribution). Given a Markov chain © = (T, u), we say that a
distribution T is stationary over a countable set S if for all i € [#S]

T = E ﬂ:j'Tj,i'

jel#s]

The existence and the uniqueness of the stationary distribution depend on the structure
of the transition matrix. As an example, ergodic Markov chains have a unique stationary
distribution but many others do not. We note, however, that in all the evaluations of our
attacks (see Section 5.4), we were always able to generate the stationary distribution. We
refer the reader to [Nor98] for more details. Note that 7 is invariant by the transition matrix T,
i.e., m = - T. Also, the existence and uniqueness of a stationary distribution depend on
some properties of the Markov chain. In this work, we will be interested in the irreducible
chains, a class of Markov chains for which the stationary distribution is unique if all states
are recurrent positive.

49

5 MAPLE

Average number of visits. A close concept to the one above is the average number of visits
made to a particular state. Given a sequence of t states that a Markov chain visited, one can
compute the frequency of visits made to every state. In contrast to stationary distributions,
the average number of visits can always be computed. We define it more formally below.

Definition 5.2.2 (Average number of visits). For a given Markov chain © = {X,, : n > 0}, the
number of visits to the ith state for all n > 0 equals

1 n
Vin = Z Lix,=),
=1

where Lix;=i) is an indicator function defined as

1y _n=
&X;=0) 0 otherwise.

There is a relationship between the number of visits and the stationary distribution. In
particular, after a large number of steps n € N, the stationary distribution is approximatively
equal to the average number of visits. We formalize this relationship in the lemma below.

Lemma 5.2.3 (Convergence of the average number of visits). Given a Markov chain © = (T, u)
and its stationary distribution T, the average number of visits to the ith state for a sufficiently
large n € N verifies

. AT
Vl,n X T,

where 1T; = Zje[#s] Tj - pji,l-e., T; is ith value of the stationary distribution .

The above lemma is an important component of our Stationary attack, and one could think
of our attack as an analogue of frequency analysis. Our attack is detailed in Figure 1 and
works at a high level as follows.

Attack overview. Stationary takes as input the query equality £ := geq(q) of the client’s
query sequence and a Markov chain © representing the client’s query distribution. First, it
parses the query equality as a square matrix (B, ;); je[¢] Where t denotes the length of the
sequence of queries. It also parses the Markov chain © to obtain the transition matrix T.°
The goal of the attack is to map every query, or every index in{1,--- , t}, to the corresponding
keyword in the keyword space W. For this, the attack initializes a mapping a : [t] = W. It
then computes the stationary distribution 7t of the Markov chain’s transition matrix, T, such
that
n=m-T.

5Note that the Stationary attack does not require the knowledge of the initial distribution w of ®. This implies
that the Stationary attack requires slightly less information than the exact knowledge of the query distribution.

50

5 MAPLE

. Stationary(f,@):
1. parse © as (T, u) and £ as (B; ;); je[¢;
2. initialize a map a : [t] > W,

3. compute the stationary distribution

if it exists, otherwise abort;

4. compute the query frequency v= (v;,---,v,) of unique queries in geq such that

V; = Z B ;/t;

Jelt]

5. instantiate an empty set U;
6. forallie[t],

a) find p that verifies

p = argmin |v; — 7;;
jel#WI\U

b) set a(i) :=w, and add p to U;
7. output a.

Figure 1: Our attack: Stationary.

Note that the attack aborts if the computation of the stationary distribution is not possible—
refer to our discussion above. Next, given the query equality, the attack computes the query
frequency v 'Histogram’ of all unique queries. That is, given the query equality £ := geq(q),
the attack determines for every query the number of times the same query appears in the
sequence. This can be calculated by simply summing the number of times every unique
query is made, and then dividing it by the total number of queries t. From a stochastic lens,
the query frequency v is exactly equal to the average number of visits over the states of the
Markov chain. Given the result of Lemma 5.2.3 introduced in Section 5.1, we know that the
average number of visits to the ith state is approximately equal to the ith component of the
stationary distribution, 7. As a result, given the stationary distribution 7w = (7,-- -, 7,,,) and
the number of visits v= (v, -+, V), the attack simply maps the closest value in 7 to v;, for all
i € [t]; effectively mapping every query to a state (and therefore to a keyword). Finally, the
attack outputs the mapping a and the error score comprising of the total distance between
the average number of visits and the selected component of the stationary distribution.

Efficiency. Given a query sequence of length t and a keyword space W of size m, the total
running time of the Stationary attack is

O(m -(m?+ t)).

This running time can be broken down into three main parts.

51

5 MAPLE

s (part 1): computing the stationary distribution 7 requires O(m?®) steps,®
* (part 2): calculating the query frequency v takes O(t) steps,
* (part 3): calculating the arg min takes O(m - t) steps.

We observe that the computation of the stationary distribution is the most expensive part of
the attack, which requires O(m?) iterations where m is also the number of states composing
the Markov chain.

Note. The Stationary attack is similar to other attacks like Frequency-An [NKW15] or
Att-Gen [LZWT14]. Though these attacks all rely on computing the argmin between the
observed and known frequencies, they do not exploit the dependencies of queries. The
Stationary attack, on the other hand, does and highlights an important relationship between
the stationary distribution and the average number of visits which is a crucial observation
that our main attack, Decoder, leverages.

5.2.2 The Decoder Attack

In this section, we describe our second attack, Decoder, which is a generic attack that can be
instantiated in various ways depending on the underlying instantiation of the observation
matrix. In this work, we consider two ways to instantiate the observation matrix and we
refer to the resulting attacks as Decoder-N and Decoder-B. These two variants achieve
different recovery rates depending on the shape of the auxiliary distribution as we will detail
in Section 5.4.4.

Similar to Stationary, we will first start by describing the generic Decoder as a known-
distribution attack and then follow with the description of the two variants but later in Sec-
tion 5.3, we show how to use it to build a known-sample attack. As any known-distribution
attack, the Decoder attack tries to solve the following problem:

Given observed leakage and a known query distribution, what is the query sequence
that most likely explains this leakage?

Our attack considers this question in the context of query distributions that are Markov
chains and solves it modeling the problem as an inference problem on hidden Markov models
(HMM). And as such, we were able to inherit many important results that have been made
in the HMM area. For our attack specifically, we leverage the Viterbi algorithm [Vit67] —
an algorithm that was first described in 1967 as a decoder for convolutional codes. Before
we describe the attack we first recall what hidden Markov models are and how they are
connected to our problem.

5Note that there are more efficient ways to calculate 7. We are assuming that the underlying solver makes
use of the LU decomposition [Sch95].

52

5 MAPLE

Hidden Markov Model (HMM). An HMM is a pair of dependent stochastic processes where
the first process is a hidden Markov chain while the second process is observable, i.e., its
output states can be observed. In particular, the output of the second process depends on the
output of the first process. We provide a formal definition below.

Definition 5.2.4 (Hidden Markov Model (HMM)). A hidden Markov model (HMM) HMM is
composed of:

* a Markov chain process © = {X, € [#S] : n > 0} over a countable set S whose outputs
are hidden,

* a stochastic process T ={Y, € [#T] : n> 0} over a countable set T that verifies,
Pr[Y,=i|X,=j]1=0;;
where O = (O ;)ie[#s],je[#T] IS the observation matrix.

The observation matrix captures the probability of observing the jth value in T given that the
hidden process is at the ith state in S. We characterize a hidden Markov model HMM with
three parameters: (1) the transition matrix T of the hidden Markov chain process ©; (2) the
initial distribution u of ®; and (3) the observation probability O. We write HMM = (T, O, u).

HMM inference. For the Decoder attack, we model the user’s query distribution as the
hidden Markov chain of an HMM and the corresponding leakage as the observable process.
Given such an HMM, we are interested in solving the question above. In particular, given the
observation (the leakage) and the Markov chain parameters (the query distribution), we can
leverage existing results in stochastic processes to output the sequence of queries that best
explains the observation. This can be efficiently solved using the Viterbi algorithm [Vit67]
which was first described in 1967 as a decoder for convolutional codes. At a high level, the
Viterbi algorithm finds the query sequence q* that maximizes

Pr[q | o,HMM]

where o is the observed leakage and HMM is the hidden Markov model. We describe the
Viterbi algorithm in Figure 7 of Section 7.5, but at a high level, given an HMM = (T, O, u)
and a sequence of observation o = (04, - ,0,), the Viterbi algorithm outputs a sequence
r=(ry,---,r.) where r; is a state in the hidden Markov chain, for all i € [t].

We describe the Decoder attack in Figure 2 and provide more details below. Note that Decoder
can be instantiated in different ways depending on how the observation matrix is constructed.
In this work, we consider two ways to do this which results in two instantiations: Decoder-N
and Decoder-B. These two variants achieve different recovery rates depending on the shape
of the auxiliary distribution as we will see in Section 5.4.4. We take a top-down approach
where we first describe the generic Decoder attack and then describe the two variants.

53

5 MAPLE

¢ Decoder(£,0):

1.
2.
3.

10.
11.

parse © as (T,u) and £ as (B; ;); jere);
initialize a map a : [t] > W;
compute the stationary distribution

n=m-T,

if it exists, otherwise abort;
compute the set Z of all unique queries from the leakage

T:= {i : Bjj=0,forallj<iandie [t]};

. compute the query frequency v = (v;);c7 of queries such that for alli € 7

Vi = Z B;;/t;

Jelt]

compute O « Obv(ﬂ:, V);

set HMM to (T, 0, u);
seto:= (04, -+ ,0,) where for all i € [t],

0;:=j" where B,;;=1andB;; =0Vk<j";

compute r « Viterbi(HMM, 0);
set a(i) :=w,, foralli € [t];

output a.

Figure 2: Our attack: Decoder.

54

5 MAPLE

Attack overview. At a high level, Decoder is composed of two phases. The first phase,
and by far the most challenging of the two, consists of computing the observation matrix
O of the (observable) Markov chain. Recall that we assume that the adversary only knows
the query distribution but does not know the observation probabilities O. Now, given the
observation matrix O, the attack has a complete description of an HMM which it then uses
as input to the Viterbi algorithm. Ultimately, the accuracy of Decoder relies on two criteria:
first, how well the observation matrix O captures the relationship between the hidden state
and the observation state; and second, how accurate the inference algorithm is given the
HMM and the concrete observation. The latter is handled by the Viterbi algorithm.” The
former is harder to deal with because the observation matrix could be instantiated differently
depending on the auxiliary distribution. We provide two possible instantiations, but first we
give details on how the Decoder attack works.

Phase 1: Decoder takes as inputs the query equality pattern £ := geq(q) of the client’s query
sequence and the Markov chain ©. First, it parses the query equality as a square matrix
(B; j)i je[¢s] Where t denotes the length of the query sequence. It also parses the Markov chain ©
to get the transition matrix T and the initial distribution u. In addition, it initializes a mapping
a: [t] = W. Given T, the attack computes the stationary distribution © = (7, ,7,,)
where m = #W is the number of keywords (or states) in W. Similar to the Stationary attack,
the attack aborts if the stationary distribution does not exist.® Next, the frequency, v;, of each
unique query i € 7 is first calculated using the query equality

V; = Z Bi,j/t'
jelt]

Note that the set Z corresponds to the set of unique queries in £. In particular, given (B, ;); je[¢],
we can identify the position of the first time a query for a keyword w € W is made. Then, the
attack computes the observation matrix in line 6 of Figure 2. Note that the Obv function can
be instantiated in various ways, but we specifically focus on two approaches: Obv-N, which
is based on the ¢;-norm; and Obv-B, which is based on the binomial distribution.

Phase 2: the only remaining element to prepare before running the Viterbi algorithm is the
sequence of observation, 0. Given the query equality pattern (B, ;); je[¢], the attack builds
the sequence of observation of length t as follows: first, it assigns every new query an index
which is equal to the time the query is made. So if a query is made more than once, it will be
mapped to the same position it was assigned to the first time it was made. More formally, for
every i € [t], we have

0;:=j* where B;;=1andB;;=0VYk<j’,

where j* € [i] represents the position the first time the ith query was made. Given the
observation matrix O built in phase 1, the attack now has a complete set of parameters for

’Note that one could replace the Viterbi algorithm inside our Decoder attack with any new algorithm that
provides better efficiency and/or accuracy.
8Throughout all of our experiments, we were always able to calculate the stationary distribution.

55

5 MAPLE

a hidden Markov model HMM = (T, 0, u). Given HMM and the sequence of observation o,
the attack runs the Viterbi algorithm which outputs r. The output represents the most likely
sequence of visited states in the hidden process. Finally, it populates and outputs the mapping
a such that the ith query maps to the r’th keyword, w, , for all i € [¢].

The {;-norm variant of Decoder. The Obv-N function builds on the observation that the
number of times an adversary sees a given state in the observable stochastic process of the
HMM is likely to equal the (known) stationary distribution of a specific keyword, and specifi-
cally, the one with the closest value. This same observation is leveraged by the Stationary
attack and is formally captured by Lemma 5.2.3 which states that the average number of
visits made to the ith state tends to the ith item of the stationary distribution for a given
Markov chain.” We detail Obv-N in Figure 3 and it works as follows. For all i € [#W], for the
jth unique query where j € [#v], if the distance between the frequency v; and the stationary
distribution of the ith state is less than €, set O, ; to 1 —|v; — m;|. Otherwise, set O; ; to 0.
The matrix components are then normalized such that the sum of each row is equal to 1.
Note that this is a requirement for a well-formed observation matrix. We made the choice of
using the £;-norm, but other distances can be used for this phase as well. Note also that this
variant makes use of an error parameter that is fixed throughout our implementation. We
refer to the Decoder attack that makes use of the Obv-N function as Decoder-N.

The binomial variant of Decoder. The Obv-B function builds on the observation that the
leakage, £, can be viewed as a series of binomial experiments with different success values.
In particular, the attack views the leakage as a sequence of #Z binomial experiments such
that in every experiment, we fix the number of successes to the number of times a specific
query has been queried for. The attack then assigns the observation matrix component to
the corresponding binomial probability mass function. More formally, given a fixed keyword
w;, we consider its corresponding stationary distribution 7t; as the parameter of the binomial
distribution, for all i € [#W]. And we consider the sequence length ¢t as the number of trials
in each experiment. Then for every unique query j, we know from the leakage that it has
been queried ¢ - v; times. The attack then sets

t t-v: t—t-v;
oi,j:(t-v)'ni Pl
j

The matrix components are then normalized such that the sum of each row is equal to 1,
refer to Figure 4 for a detailed description. The rationale behind this variant can also be
explained through the lens of the Stationary attack. In particular, one needs to first observe
that the binomial probability mass function reaches its maximum value when the number
of successes is equal to the expected value, which is equal to ¢ - 7r;. This means that O ;

°Note that this observation applies to our case since the number of states in the observable stochastic process
is smaller or equal to the number of states in the hidden one, but also because we know that every hidden state
can only map to a single observable state. This holds true because the query equality pattern is a permutation
function.

56

5 MAPLE

e Obv-N(7,v):
1. parse v as (v;)iez and 1 as (71;);ep 4w
2. forallie[#W],
a) initialize a counter count := 0;
b) forall jeZ,
i. if [v;—m;| <, then set O; .oy := 1 —|v; — ;| and O otherwise;
ii. increment count;
c) set A; i= i1 05
d) forall j € [#7], set O; ; := O; ;/A;;

Figure 3: The Obv-N variant.

¢ Obv-B(m,V):
1. parse v as (v;);ez and 7 as (70;);cr 4w
2. forallie[#W],
a) initialize a counter count := 0;
b) forall jeZ,
i. setQ;;= (t_fvj) . nf'vj (1 =)t
ii. increment count;
c) set A; i= 1710
d) forall j € [#T],set O, ; :=0;;/A;

Figure 4: The Obv-B variant.

attains its maximum value if and only if t - 7r; ~ t - v; which again shows the relationship
to Lemma 5.2.3. We refer to the Decoder attack that makes use of the Obv-B function as
Decoder-B.

Remark. Both variants share the property that the components of the observation matrix
attain their maximum values, for a given row, at exactly the same indices. However, contrary
to the ¢;-norm variant, the binomial variant never assigns a zero to any component in the
matrix which leaves more possible sequences for the attack to output. This is especially
helpful in cases where the sequence length t is small or when the leakage resulted from an
unlikely observation.

Efficiency. Given a query sequence of length t and a keyword space W of size m, the
running time of the Decoder attack is

O(m2 -(m+ t)).

The asymptotic calculation can be broken down into four main parts:

57

5 MAPLE

* (part 1) computing the stationary distribution 7 takes O(m?) steps,

* (part 2) calculating the query frequency v takes O(t) steps,

e (part 3) populating the observation matrix O takes O(m?) steps for both variants,
s (part 4) computing the Viterbi algorithm takes O(m? - t) steps.

Note that computing the Viterbi algorithm and the stationary distribution are the most
expensive parts of the attack.

5.3 From Distributions to Samples

In this section, we transform our known-distribution attacks into known-sample versions,
which we call Stationary-Smpl and Decoder-Smpl. '© In the following, we first describe the
different forms of auxiliary data our attacks can take as input.

Adversarial knowledge. Assume that the adversary is given as auxiliary data aux, a se-
quence of queries q := (ql, e ,qn) where the queries are for keywords in a set W’ which
can be different from the client’s keyword space W. In this case, we write aux = (ql, e, qn).
We also consider a more general setting where the auxiliary data is composed of multiple
query sequences aux = (ql, sl qp) where q; =(q;1, " ,qj,,), for all i € [p]. Moreover, we
assume that the auxiliary query sequences are sampled from of a Markov chain process.

Learning the Markov chain. Our known-sample attacks build on the Stationary and the
Decoder attacks. As described in Section 5.2.1 and 5.2.2, these attacks take as input the
query equality pattern and a Markov chain. However, along with the query equality pattern,
the adversary only has a sequence of queries as input. A natural question then arises:

Can we learn a Markov chain knowing only its realization?

Similar to the decoding attack, learning the parameters of a Markov chain given some
observation is one of the most fundamental inference problems in the area of hidden Markov
models. The well-known Baum-Welch (BW) algorithm [Wel03] can efficiently find the HMM
parameters that maximizes the probability of making a given observation. At a high level,
BW outputs the parameters HMM* that maximizes the following quantity

Pr[o | HMM]

where o is a sequence of observations. In particular, we use BW to generate the transition
matrix T which we then feed to either Stationary or Decoder. We provide the details of

1%We similarly denote by Decoder-N-Smpl and Decoder-B-Smpl the known-sample versions of the Decoder
attack when the observation function is Obv-N and Obv-B, respectively. This notation will become helpful when
describing our experimental results.

58

5 MAPLE

. *-Smpl(f,aux):
1. initialize an empty map a* and set s* := 00;
2. for all q € aux,
a) compute HMM « Baum-Welch(q);
b) parse HMM as (T, 0, u) and set © := (T, u);
c) compute (a,s) « Stationary(¢,©);
d) ifs <s*,seta*:=a and s* :=s;

3. output a”.

Figure 5: Our inference attack: x-Smpl, where * is a placeholder for Stationary and Decoder.

the Baum-Welch algorithm in Figure 8. We describe the Stationary-Smpl and Decoder-Smpl
attacks in Figure 5.

Attack overview. Both Stationary-Smpl and Decoder-Smpl take as inputs the query equality
geq and the auxiliary data aux, while the Decoder-Smpl takes an additional error parameter
e. For every query sequence q in aux, the attacks run Baum-Welsh algorithm to learn the
Markov chain ®y. Then the attacks simply run their corresponding known data attacks
as a subroutine. The main difference is that instead of only outputting a mapping a, the
subroutine attacks also output an error score s. This score can be viewed as a metric that
quantifies the quality of the mapping. The smaller the score, the better the mapping. In
the following, we describe how the score is calculated for both the Stationary and Decoder
attacks:

* for the Stationary attack, the score s is calculated by summing the 1-norm distance
between the query frequency v; and the chosen stationary probability 7, such that, for
allie[t],

si=s+|v;— 7,
The score is then equal to the sum of all the distances between v; and ©

corresponds to the position in 7t that minimizes the distance |v; — 7 j|_11

0> Where p

* for the Decoder attack, we also introduce a score that tries to capture the accuracy of
the Viterbi algorithm. The idea is similar to the above but tries to measure the accuracy
of the chosen Viterbi path. We refer to the reader to Figure 7 for more details.

For every iteration, every attack outputs a mapping a and a score s. The attacks compare
the new score s to the previous smallest score s*, if s < s*, the attack changes its preferred
mapping to a and sets a* := a.

Hwhile there is a correlation between a small score s and the accuracy of the mapping a, it is not however an
implication. It is possible to have a score s = 0 and the accuracy of the mapping being completely off. So our
decision to pick the mapping with the smallest score is a heuristic decision.

59

5 MAPLE

Efficiency. The efficiency of Stationary-Smpl and Decoder-Smpl is similar to the one of
Stationary and Decoder, respectively, except for the additional cost of the Baum-Welsh (BW)
algorithm. BW has a running time equal to O(mi2 - t;) where m; is the size of the keyword
space of the ith query sequence q in aux, whereas t; is the length of q;. To sum up, the time
complexity of Stationary-Smpl is equal to O(m S(m?+t)+ Zle m? . ti), whereas the time
complexity of Decoder-Smpl is equal to O(m2 -(m+t)+ Zle ml.2 . ti), where p is the number
of query sequences in aux. If we assume that m; = m and t; = t = O(m), for all i € [p],
then Stationary-Smpl and Decoder-Smpl attacks have a running time equal to O(p . mg).
Even though the running time of both attacks is polynomial in m, they can be prohibitive in
practice. We noticed this during our evaluations as we struggled to scale our attacks to large
keyword spaces. As an example, for keyword spaces of size 1,000 and auxiliary sequences
aux composed of 10 query sequences, both attacks require around 2*8 steps. There are ways
to reduce the overhead by using more efficient variants of BW, Viterbi and of the computation
of the stationary distribution, but this would lead to a loss in accuracy.

5.4 Empirical Evaluation

In this section, we evaluate our known-distribution and known-sample attacks across a wide
variety of scenarios and use both real-world query logs and synthetic query distributions.
We implement and evaluate our attacks using the LEAKER framework [KKM*22] and we
compare the recovery rates of our attacks with the ones of the IHOP attack [OK22]—the only
currently-known attack that exploits the query equality pattern under dependent queries. We
start by briefly describing our implementation, our query logs, query distributions, and our
evaluation setting. We then describe our results before finally providing our takeaways on
the various risks our attacks pose.

5.4.1 Implementation

We implemented our attacks in Python 3.9 and added it as an extension to the open-source
LEAKER [KKM™*22] framework due its interoperability and modular design. LEAKER already
implements 15 leakage attacks found in more than 12 different papers. LEAKER’s modular
design allowed us to integrate and comparatively evaluate the effectiveness of our attacks
under different assumptions using queries from multiple query logs and distributions.

While LEAKER has several modules integrating both point/keyword and range queries at-
tacks, it only supports the independent query generation. As a result, we extended LEAKER
to support dependent queries and attack evaluations in this setting by adding the respec-
tive backend implementations for a dependent-query space and dependent-query evaluator.
The dependent-query space creates and populates the query space W using information from
either a query log or an artificial distribution. The dependent-query evaluator evaluates a
dependent-query attack on query sequence q drawn from a dependent-query space given

60

5 MAPLE

query equality leakage. We implemented Stationary, Decoder with its two variants Decoder-N
and Decoder-B, Stationary-Smpl, Decoder-Smpl with its two variants Decoder-N-Smpl and
Decoder-B-Smpl, and finally IHOP which totaled 2,595 lines. All the implementations can
be found in the following public repository [KKM*23] and as a branch in the open-source
framework LEAKER [KKM*22].

5.4.2 Query Logs and Query Distributions

In this section, we describe the query logs as well as the synthetic query distributions we
used in our evaluation.

Query logs. No prior work evaluated their attacks on real-world query logs. In particular,
the evaluation of the THOP attack [OK22] used the urllinks in Wikipedia pages to model client
query distributions. We do believe that when it comes to attacks based on query equality
pattern, it is crucial to assess their accuracy against realistic settings. Thus, the only data
necessary to evaluate our attacks are query logs or artificial query distributions. Essentially a
query log is a log file that records each client’s query behavior, and it varies depending on the
used system.

For our evaluation, we use the following two publicly available query logs from [KKM*22]:

* AOL is a publicly available search engine query log [PCT06] that contains web searches.
AOL contains 52M queries that were issued by 656 thousand users between March 1°¢
and May 31°¢, 2006. The total number of unique keywords is 2.9M.

* The Arabidopsis Information Resource [ECW'14], or TAIR, is a publicly available query
log for plant genetic annotations containing 650 thousand unique keywords issued by
1.3 thousand users between January 1%¢, 2012 and April 30", 2013. The total number
of unique keywords is 14K.

Each query log can be viewed as a sequence q itself composed of several client query sequences,
q,, for u € U, where U denotes the set of users in the log. Given q, LEAKER’s pre-processor
module parses, tokenizes, extracts, stems and removes stop words. In the case of the AOL
query log, we also discarded the queries issued by the 1,000 most active users because their
query behavior suggested that they were bots.

Query distributions. We consider four synthetic query distributions all of which are Markov
chains with various transition matrices. The first distribution, Uniform, captures settings
where all the keywords can be queried with uniformly distributed transition probabilities. In
particular, in this case, all the query sequences are possible. The second distribution, Zipf, is
similar to Uniform in the sense that all query sequences are possible, but some transitions are
more likely than others. The next two distributions capture a different setting where, given a
current keyword, the next query can only be made from a subset of all possible keywords. In

61

5 MAPLE

other words, some keywords are unreachable. This constraint results in creating sparsity in
the transition matrix and we control its degree in two different ways. For Binomial-Zipf, we
assume that the number of possible transitions (non-zero values) per row follows a Binomial
distribution, whereas for Zipf-Zipf, we assume that the number of possible transitions is Zipf
distributed. We describe all the distributions below, where we show how to generate their
transition matrices.'2

* Uniform: for every i, j € [n], compute T, ; & {0, 1},

» Zipf: for every i € [n], we pick a permutation f3; : [n] — [n] at random. We then set
Tij= fs}n([o’i(j)) for all j € [n], where f; , is the probability mass function of the Zipf
distribution with parameter s > 0 and support size n,

k—S
HTIS,

>

fs,n(k) =

n e—g = . .
where H, ; = >, i is the general harmonic number. In our experiments, we set
s=2.

* Binomial-Zipf: for every i € [n], sample a permutation f3; : [n] — [n] at random. And
for all j € [n], sample a value 6; ; & Bernoulli(p) where 0 < p < 1. If 6, ; = 1, then
set T; j 1= fs’n(ﬂi(j)), otherwise set T; ; := 0. In our evaluation, we set p = 0.5 and
s = 2. Observe that the number of non-zero transition probabilities follows a Binomial
distribution.

* Zipf-Zipf,: first, for every i € [n], sample a Zipf value 6; & Zipf(s,n), then compute
0; := 6; + v which represents the number of non-zero transitions the ith state can have.
We then sample a permutation f3; : [n] — [n] at random, select a set S; = {jy,"* -, jg,}
of size 6; at random from {1,---,n}, and compute Tij, = fs,n(ﬁi(jp)) for all p € [6;],
and T, ; := 0 otherwise.

The initial distribution u is the same for all distributions and is simply u = (1/n,---,1/n),
i.e., all keywords are equally likely to be queried at the beginning.

Sparsity. To measure the sparsity of a given distribution, we compute the minimum Ham-
ming weight (HW) of a Markov chain as follows. First, we compute the HW of the ith state
which is the number of non-zero transition probabilities in T;, for i € [n]. The minimum
HW of a Markov chain is then simply the minimum HW across all states. We later show
in Section 5.4.4 that varying the sparsity of the transition matrix significantly impacts the
accuracy of our known-distribution attacks.

12Note that the details of row normalization are straightforward and therefore skipped from the description
below.

62

5 MAPLE

Leakage geq(q)

Scenarios Auxiliary s
Knownq Sampled q

Exact (E) — q < BW(q;) q;

All (A) - q < BW(ql) (‘-11’ T qn)

Split (S) qi;2 q < BW(q;2) i1

Other (0) q; qa<—BW(q) (91, ,9i-1,9i+15 " Gn)

Table 5.1: Summary of the evaluation setup for known-sample attacks to recover the queries
of the ith user.

Note. Using synthetic query distributions is by no means an ideal setup, but it is unfortu-
nately our only option due to the scarcity of publicly-available query logs. The query logs
we run our attacks against are a great resource but they are limited and do not necessarily
capture the most common query distributions. We try to fill this gap with synthetic query
distributions so that we can better understand how the attacks behave in various scenarios.
Note that the four distributions described above are not exhaustive, but they were carefully
crafted to capture different properties of the transition matrix which, we believe, can impact
the recovery rate of the attacks. Such properties include, at a high level, the degree of
connectivity between the states, the level of sparsity and different shapes of the stationary
distributions.

5.4.3 Evaluation Setup

We evaluate our known-distribution attacks on synthetic query distributions, and we evaluate
our known-sample attacks on the publicly available query logs described in Section 5.4.2. In
the following, we describe the evaluation setup for each setting.

Known-distribution setting. For every query distribution, we sample a query sequence s
and compute the query equality pattern on it. Sampling from a Markov chain works as follows.
We pick an initial state uniformly at random from all possible states and, for every transition,
we pick the next state based on the probabilities of the transition matrix. The adversary is
then given the geq on the sampled query sequence s and the query distribution.

Known-sample setting. We consider four different cases that capture different scenarios.
For all scenarios, we need to specify the target client/user (say ith user). Moreover, in every
case except for the first and the second, we consider the leakage to be either: fixed or sampled.
For the former, we generate the leakage by computing the geq on (a subset of) the ith user’s
query log sequence. For the latter, we: (1) learn the ith user’s query distribution by applying
the Baum-Welsh algorithm to (a subset of) its query log sequence; (2) sample a new query
sequence s from the learned Markov chain; and (3) compute the geq on sampled sequence
s. Note that all the following four cases apply to both the AOL and TAIR query logs. We
summarize these four cases in Table 5.1 and describe them below.

63

5 MAPLE

* Exact (E): the adversary receives as auxiliary sequence the query log sequence q; of the
ith user. Moreover, in this case, we only consider the sampled leakage setting where the
adversary receives as leakage the query equality pattern of a query sequence s sampled
from the distribution learned from q; using BW.

* All-Users (A): the adversary receives as auxiliary sequence the query log sequences of
all users including of the the ith user (the target user). In the fixed leakage setting, the
adversary receives the query equality pattern of the ith user’s query log sequence, q;.
In this case, we only consider sampled leakage where the adversary receives the query
equality pattern of a query sequence s sampled from a distribution learned from the
ith user’s query log sequence q;.

» Split (S): the adversary receives as auxiliary sequence the first half of the ith user’s
query log sequence, q;);. In the fixed leakage setting, the adversary also receives the
query equality pattern of the second half of the ith user’s query log sequence, q;j5. In
the sampled leakage setting, the adversary receives the query equality pattern on a
query sequence s sampled from a distribution learned from the second half of the ith
user’s query log sequence, q;|;.

* Other-Users (0): the adversary receives as auxiliary sequence the query logs sequences
of all users except for the ith user (the target user). The query equality pattern that
the adversary receives in both the fixed and sampled leakage settings is similar to the
All-Users case.

Note that because we do not consider fixed leakage for the Exact and All-Users scenarios,
we never give the attacker the exact sequence subject to the query equality leakage. These
settings are listed in decreasing strength with respect to adversarial knowledge and may
correspond to certain real-world events which we describe below:

* Exact (E): This scenario captures a setting in which the adversary (possibly the server)
is able to compromise a user’s machine for a long period of time and obtain its query
log. After the period of compromise, the adversary can only observe the query equality
pattern on the new queries issued by the user. In particular, in this setting we sample
client’s queries from a similar distribution as the one of the observed queries during
the period of the compromise.

* All-Users (A): In this scenario, the adversary not only obtains the query log of the target
user, but a set of users in the system. This can occur by compromising all the users’
machines for a period of time. Similar to the above, after the period of compromise,
the adversary can only observe the query equality pattern on new queries issued by the
target user. These queries are generated similar to above.

» Split (S): This scenario is similar to the Exact scenario. The difference however is in
how the user generates its queries after the period of compromise, please refer to the
paragraph above for more details. In particular, in this scenario, we split the query
log into two parts, a first part given as auxiliary information to the adversary while the
second part is used to generate the queries for which the adversary observes its query

64

5 MAPLE

equality pattern. This is a more realistic setting when compared to the Exact setting in
the sense that the query log itself has been used instead of making assumptions on the
query distribution.

* Other-Users (0): In this scenario, the adversary is not able to compromise the target
user’s machine but is able to compromise the other users’ machines.

Our goal is to evaluate query equality attacks under assumptions of varying degrees of
realisticness for both real world data collections and synthetic distributions. Thus, similarly
to prior work, we have performed multiple evaluations on individual users based on different
query scenarios and evaluation settings. The adversarial scenarios cover the different ways
the adversarial knowledge is given. The evaluation setting covers the way the user’s queries
are modeled. We proceed by presenting our scenarios and settings before displaying the way
our evaluations are executed. In Table 5.1, we present an overview of all possibilities of our
evaluation setup.

Experimental setting. We cover several settings for generating the user’s queries in our
evaluations. It was noticed in prior work [OK22] that attacks may require a large amount
of queries. Since our query logs do not contain that many queries per user, we opted for
query sampling, i.e., executing a random walk over the transition matrix P from a random
start state. The transition matrix P modeling the user’s queries is learned via the Baum-Welch
algorithm (cf. paragraph 7.4), where we ensure to remove from the input query sequence
the keywords that result in end states, i.e., states in the tail of the query sequence that only
appear once and therefore have no outgoing edges. This approach is what we call a sampled
evaluation. For any evaluation on query logs, we will consider both the sampled and the
not-sampled evaluation. The latter just means that we do not use the Baum-Welch algorithm
and only attack the exact sequence of queries given by the query log. Note that an evaluation
being sampled or not-sampled is independent of its given scenario. As artificial distributions
are given via a transition matrix, we only consider sampled evaluations in these cases.

Experiment setup. Our experiments were run on an Ubuntu 20.04 machine with 390GB
memory and 1TB disk space. When evaluating our known-data attacks, we varied the
following parameters. First, for all query distributions, we varied the size of the keyword
space, m, from 250 up to 1,500. Second, we varied the sparsity of the transition matrix for
the Zipf-Zipf, query distribution by varying the minimum Hamming weight from 5 to 450;
here, the size of the keyword space is fixed to 500. Finally, we also varied the size of the
sampled query sequence, t, from 1,000 up to 5 - 10° queries'® . We run each attack 30 times
and report the median, maximum and minimum recovery rates. The recovery rate is simply
the fraction of correctly recovered queries over the length of query sequence.

13While users may not issue a large number of queries, we use a wide range to identify where the attacks do
and do not work. A similar range was also used to evaluate the IHOP attack [OK22].

65

5 MAPLE

When evaluating our known-sample attacks, we proceeded as follows. First, for each query
log, we selected 10 users. These users were fixed for the entire set of experiments. These users
were selected carefully so that their respective query log sequences had between 500 and
1,000 unique keywords.'* While there were more than 10 users that verified this condition,
we just picked 10 arbitrarily for feasibility. For the AOL query log, the number of unique
keywords per user varies between 313 and 782, whereas for TAIR it varies between 587 and
848. We then selected 5 users from the 10 as target users. All our results are the average
recovery rate of running the attacks against each individual user of the selected 5 users.
We run these attacks 10 times per user and report the median, maximum and minimum
recovery rates over all 5 attacked users. Note that these 5 users are again selected and fixed
throughout the entire experiment and that our experiments target users individually but
present aggregated results, i.e., we do not specifically attack multi-user schemes.

. Max. Efficacy per Attack Median Efficacy per Attack
Data Source Scenario

THOP [OK22] Stationary-Smpl Decoder-N-Smpl Decoder-B-Smpl IHOP [OK22] Stationary-Smpl Decoder-N-Smpl Decoder-B-Smpl
+ All (A) 16.7% 10.5% 99.6% 99.7% 3.9% 7.5% 99.2% 98.6%

TAIR [ECW14] Exact (E) 15.2% 10.0% 99.6% 3.9% 7.6% 99.1%
Other (0) 5.4% 4.7% 2.1% 2.3% 3.0% 3.8% 1.4% 1.7%
Split (S) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
AOL [PCT06] All (A) 90.8% 62.9% 97.8% 88.1% 62.1 38.3% 96.3% 75.0%

Exact (E) 92.6% 62.8% 97.0% 62.4% 38.9% 96.2%
Other (0) 0.4% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%
Split (S) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 5.2: Results summary of our attacks and the IHOP attack [OK22] in the known-sample
setting with fixed leakage, highlighting the maximum and median recovery rates (in
% of correctly recovered queries). The attacks are evaluated on the TAIR[ECW ' 14]
and the AOL [PCT06] query logs. The adversarial scenarios for the attacks are
described in paragraph 5.4.3 and paragraph 5.4.3.

5.4.4 Experimental Results

The recovery rate of our known-sample attacks with sampled and fixed leakage are given in
Figure 6 and Table 5.2, respectively. The recovery rates of our known-distribution attacks
are in Figures 7 and 10 in Section 7.6. Due to space limitations, we only report the results
for the Zipf-Zipf distribution in the main body of the paper. We now summarize our findings
with a focus on the median metric.

Known-sample attacks with sampled leakage. Our results with sampled leakage (cf.
Figure 6) show that our known-sample attacks achieve their best recovery rates in the
All-Users and Exact settings. In particular, in the latter, Decoder-N-Smpl achieves 99.1%
recovery rate (cf. Table 5.2) with TAIR and 53.7% with AOL for query sequence of size 50, 000.
The Decoder-B-Smpl attack behaves similarly but with a slight increase in the case of the
AOL dataset where it achieves 98.6% recovery rate with TAIR and 66.7% with AOL. This
is compared to 10.1% and 62.5% for IHOP with the same datasets. When increasing the

14We were limited to such a small number of keywords because of the non-trivial computational overhead of
our attacks as well as the IHOP attack.

66

5 MAPLE

14 < stationary-Smpl 14 < stationary-Smpl T 19 19
Decoder-N-smpl £ Decoder-N-Smpl ®
0.8 4 —+- Decoder-B-Smpl 0.8 4| —+- Decoder-B-Smpl T 0.8 0.8 4
2 = IHOP o = IHOP @]
g g g g
‘; 0.6 “é 0.6 “; 0.6 “; 0.6
g g g —<— Stationary-Smpl g —— Stationary-Smpl
g 044 / g 044 / g 044 Decoder-N-Smpl g 0.4 Decoder-N-smpl
& & // & —&— Decoder-B-Smpl & —&— Decoder-B-Smpl
THOP THOP
0.2 / 0.2 0.2 - 0.2 - T
i 1l]
0.0 0.0 0.0 L N # 0.0 L [] -
10° 5 5. 10‘ 10° 105 5. 10‘ 10° 10* 10° 5.10° 10° 10* 10° 5.10°
#Quenes #Quenes #Queries #Queries
Evaluation for each of 5 users on AOL.
14 /’e——‘ 1 /;lg——‘ 1 1
0.8 1 0.8 1 a 0.8 1 0.8 1
g g [/ g g
‘; 0.6 ‘; 0.6 / “é 0.6 “é 0.6
g < Stationary-Smpl g < Stationary-Smpl g < Stationary-Smpl g < Stationary-Smpl
g 044 Decoder-N-Smpl g 0.4 Decoder-N-Smpl g 044 Decoder-N-Smpl g 044 Decoder-N-Smpl
& —4— Decoder-B-Smpl & —4— Decoder-B-Smpl £ —4— Decoder-B-Smpl £ —4— Decoder-B-Smpl
& THOP 8- THOP = IHOP = IHOP
0.2 1 0.2 0.2 0.2
ZEmEOE e -
(— N s . = = 4 =
0.0 - T T T 0.0 - T ; T 0.0 - T v " 0.0 ¢ * * *
10° 10 10° 5.10° 10 10 10° 5.10° 10 10* 10° 5.10° 10 10 10° 5.10°
#Queries #Queries #Queries #Queries

Evaluation for each of 5 users on TAIR.

Figure 6: Our new attacks and the IHOP attack [OK22] evaluated against AOL (top) and TAIR
(bottom) in the known-sample setting for the Exact, All, Other and Split scenarios
(from left to right).

—< Stationary = Fa— *
i Decoder-N- Smpl 1 A i 1
0.8 —+- Decoder-B-smpl 0.8 0.8 0.8 I
@ & IHOP v v Y Al 1
2 2 / g g /
061 061 0.61 061 /
B B i B - B -
g g [/ > Sutionary g " Stationary g % Stationary
g 044 g 0.4 Decoder-N-smpl || & 0.4 / ~o-Decoder-N-smpl || & 41 Decoder-N-smpl
& & —4— Decoder-B-Smpl & —4— Decoder-B-Smpl & { / —+-Decoder-B-Smpl
7 /
0z 1 , o2 A -5 IHOP l 02 [l -5 IHOP 024 y = IHOP
0.0 49— \ - _,_L —& 0.0 - 0.0 *”i 0.0 J(% é
10 10 10° 5.10° 103 w" 105 5.10° 10 10 5 5. 10S 10 10° 5.10°
#Queries #Queries #Queries #Queries
250 States 500 States 1000 States 1500 States

Evaluation for Zipf-Zipf Artificial distribution with a fixed hamming weight.

Figure 7: Our new attacks and the IHOP attack [OK22] evaluated on the Zipf-Zipf query
distribution. All evaluations are done using a fixed minimum Hamming weight = 2

size of the query sequence to 500,000, Decoder-N-Smpl and Decoder-B-Smpl have a median
recovery rate of approximately 99% with TAIR and approximately 90% and 85%, respectively,
with AOL compared to about 10% and 60% for IHOP. That is, the larger the query sequence
the more accurate the two variants of the Decoder-Smpl become on both query logs. We also
note that two variants of the Decoder-Smpl attack together significantly outperform IHOP
with TAIR and AOL for query sequences of any size; and with AOL for query sequences of
size larger than 10°. Stationary performs worse than the other attacks in the Exact setting,
achieving a median recovery rate of 7.6% and 21.3% with TAIR and AOL, respectively.

67

5 MAPLE

All the attacks achieve poor results in the Split and Other settings—the most realistic settings
of our work. In particular, Stationary-Smpl has a median recovery rate of 3.4% which is the
highest among all the attacks on TAIR. For AOL, all the attacks achieve a recovery rate smaller
than 1% with IHOP achieving the highest recovery rate of 0.8%.

Overall, the two variants of the Decoder-Smpl attack outperform together the IHOP attack
and the Stationary-Smpl attack in almost all instances; except on AOL and when the query
sequence is medium sized, e.g. 10,000 queries. In this case, IHOP achieves better recovery
rates.

Known-sample attacks with fixed leakage. Our results show that our attacks achieve
their best recovery rates in the All-Users setting. In particular, Decoder-Smpl has a very
high median recovery rate, 99.2% (cf. Table 5.2), with TAIR, and 96.3% with AOL. This
significantly outperforms the IHOP attack [OK22], which had a median recovery rate of
3.9% with TAIR and of 62.1% with AOL. Our Stationary attack performs worse than the
others in the All-Users setting, with a median recovery rate of 7.5% and 38.3% with TAIR and
AOL, respectively. Recall that in this case, we only consider the Split and Other settings (cf.
Table 5.2). We observe that none of the attacks worked in the Split and Other settings. In the
Split setting, the attacks had a 0% recovery rate. In the Other setting, the Stationary-Smpl
had the best median recovery rate of 3.8% which was achieved with TAIR. Overall, our
Decoder-Smpl attack outperforms IHOP and Stationary in almost all settings and with all
query logs and does particularly well with TAIR.!®

Known-distribution attacks. We present the results for our known-distribution attacks on
the Zipf-Zipf distribution in Figure 7 where the minimum Hamming weight is 2. We observe
that the two variants of the Decoder attack significantly outperform all the other attacks for
any number of states. Starting from query sequences of length 50, 000, both Decoder-N and
Decoder-B achieve a 99% recovery rate.

In Figure 9, we varied the Hamming weight and fixed the number of states to 500. We observed
that an increased Hamming weight decreased the recovery rate of the attacks. Starting with
Hamming weight of 100, the maximum recovery rate is already below 20%. This suggests
the “denser” transition matrices may be harder to attack even when the adversary knows the
client’s query distribution. Finally, refer to Figure 10 for more results on the three other query
distributions Uniform, Zipf and Binomial-Zipf. Overall, we obtained lower recovery rates for
these distributions because, we believe, their transition matrices are significantly denser.

5Note that in [OK22], IHOP was reported to achieve much higher recovery rates in the Split scenario. This
might be due to the fact that [OK22] ensures that the query and auxiliary sequences have keywords from the
same space. This is not enforced in our experiments in order to capture a more realistic setting.

68

5 MAPLE

Anote onthe Decodervariants. Our evaluation shows that the recovery rates of Decoder-N
and Decoder-B, and similarly, of Decoder-N-Smpl and Decoder-B-Smpl, are similar through-
out the scenarios. The only exception was for AOL in the sampled leakage setting, where we
observed that Decoder-B-Smpl does better when the length of the query sequences is smaller
than 100, 000.

Summary. Our evaluation shows that Decoder-N-Smpl and Decoder-B-Smpl in the Exact
and All-Users settings with sampled leakage, '® and Decoder-N and Decoder-B with a known
distribution achieve the best recovery rates. However, despite our attacks outperforming the
state-of-the-art in most cases, it is also fair to say that, from our results, none of the attacks
work in the more realistic settings such as the Split and Other settings. It thus remains open
to find attacks that work in more realistic settings where the attacker does not know the exact
query sequence of the user.

Additionally, attacks with significant recovery rates required longer query sequences (with at
least 10,000 queries), refer to Figure 6. None of our real-world query logs had sequences of
such length so we could only simulate longer query sequences (when either sampling the
queries in the known-sample setting or when working in the known distribution setting).
In particular, in AOL [PCT06], the most active user issued 815 queries and the average
sequence length is 79. In TAIR [ECW*14], the most active user issued 2,059 queries and
the average sequence length is 500. Our data hence indicates that, overwhelmingly, users
in keyword search deployments such as AOL and TAIR may not produce a workload with
sequences sufficiently long in order for the attacks to become successful. For the more realistic
workloads of the AOL and TAIR data, the attacks are largely unsuccessful. Assessing the
efficacy of our attacks on real query logs with longer query sequences is an important future
work. However, we would like to emphasize that studying the efficacy of our attacks on
query sequences of smaller lengths is still very important, which has been highlighted by
the successfull results of Decoder-B-Smpl attack. Thus, we conclude that there is no setting
which is more realistic than another. This is for several reasons. First, ESA deployments can
be used in variety of settings where users could generate query sequences with different
lengths over a given period of time. Another reason is that, as proposed in [Kam15], the
query complexity of an attack can be used to set the query capacity of an ESA; where the
query capacity is the number of queries that can be executed before the underlying structure
is rebuilt. In such a setting, knowing how an attack performs even on relatively small query
sequences is important. Moreover, evaluations in this area have also used data from one
source to model both the client and the attacker, leaving it open to find and evaluate data
that can model the arguably more realistic case of auxiliary adversary information obtained
from a distinct source.

Finally, it is important to highlight that the computational overhead of all the attacks—ours
included—could make them prohibitive in practice. In fact, in order to run our experiments,

16We would like to note that the Decoder-B-Smpl attack achieves a better recovery rate when the query
sequence was less than 100,000 queries.

69

5 MAPLE

we had to choose specific users in the query logs and use a small number of states in the
known-distribution setting otherwise the evaluation would take many years to complete. For
example, evaluating our attacks in the Others scenario with sampled leakage took almost 38
hours to complete.

70

6 Conclusion and Future Work

In this chapter, we conclude this thesis with a summary of our contributed works for Encrypted
Search Algorithms (ESAs) cryptanalysis, offer a guideline on how to interpret our results,
discuss the security implications, highlight the underlying limitations of inference attacks
and finally wrap up with an outlook for potential future work.

6.1 Summary

Because much of ESAs research is theoretical, figuring out the impact of attacking a specific
leakage profile in a practical real-world setting, i.e. large-scale data platform, presented a new
open-challenge. Throughout our evaluations we depicted the different assumptions over data
and query distribution usually made by prior works. Based on these assumptions, the attacks
usually overlook the prohibitive computational cost while presenting their effectiveness. Thus,
having a clear understanding of when attacks work and under which setting was important
aspect of our work in order to evaluate their feasibility for large scale deployable solutions.

But, due to closed-source nature of previous implementations and constrained evaluations
without real-world query data, a systematic re-evaluation effort of scale was severely hindered.
With our open-source LEAKER framework, we enable the community to easily implement,
independently evaluate, and compare current and future attacks. By systematically using it
to re-evaluate the major leakage attacks for keyword and range queries with novel real-world
queries and datasets.We uncovered sometimes unexpected settings where our evaluations
could indicate that leakage attacks pose noteworthy risks (cf. Table 4.1 & Table 5.2). We
summarize the implications of our work in the following paragraphs.

Keyword search attacks. The IKK [IKK12] and COUNT [CGPR15] attacks did not work as
well on our datasets whereas the SUBGRAPH attacks of [BKM20] performed surprisingly well
even in settings with low known-data rates, and on low-frequency queries on small private
datasets. This contradicts previous intuitions that SUBGRAPH attacks might not work as well
on real-world data [BKM20]. While some SUBGRAPH assumptions lower accuracy, it still
poses a significant risk, especially if query equality can also be used to identify repeating
queries. As a consequence, we view SUBGRAPH attacks as practical even for low-frequency
keywords and therefore recommend schemes that hide the response identity and response
length patterns in such settings (for example, by using some of the recent leakage suppression

71

6 Conclusion and Future Work

techniques and constructions [KMO18; KM19; PPYY19; BKM20; GKL*20; GPPW20; APP*21;
GKM21]). Compared to the other attacks, SUBGRAPH relies on atomic leakage of individual
documents, and our evaluations strengthen the intuition that such leakage might be more
risky. Our results also confirm the conclusions of [BKM20] that the VOLAN and SEIVOLAN
attacks (which exploit the total volume and response length patterns) could pose some risk
for known-data rates > 75%.

The risk of sampled-query attacks [LZWT14; OK21] remains open and still needs to be
evaluated in real-world settings, e.g., by using and extending our LEAKER framework. Such
high knowledge is realistic for public databases, indicating that private information retrieval
is more appropriate in that case. Our evaluation tokenized queries and considered each word
as a separate query. Investigating the case for Boolean queries [CJJ"13; KM17; LPS*18] and
its additional leakage is a challenge we leave open.

Range search attacks. In contrast to keyword search, our evaluations uncovered many
subtleties in the case of range search. As expected—since many range attacks are designed
to work for specific query distributions—the only attack to succeed on all of our real-world
datasets was ARR-OR which requires leakage of the response identity, the query equality
and the order. Standard encrypted range schemes, however, do not leak the order [FJK*15;
DPP*16].

If range queries have large width or if they are skewed towards the end points, we found
that leaking the response identity is risky because the GENKKNO attack was successful. If,
in addition, the query equality is also leaked then we found that the ARR attack was also
successful. We found that leaking the response length and the query equality on evenly
distributed data could be risky in light of the APA [KPT21] attack. However, our experiments
showed that attacks that solely rely on the response length rarely worked on our datasets.
This could also indicate an (intuitive) gap between different leakage types for range search,
but more data and more evaluations are necessary to confirm this. For this, leakage
suppression techniques [KMO18; KM19; PPYY19; DPPS20; GKL"20; GPPW20; APP'21;
GKM21; SOPK21], which mitigate or eliminate various leakage patterns, could potentially
be applied—at some computational and/or storage cost. These techniques already address
different patterns so it remains open to integrate them into range schemes and also evaluate
them under real-world queries.

Statistical Inference attacks. In order to highlight their effectiveness, attacks exploiting
the query equality leakage pattern in the dependent-query setting, mainly opted for a set
of evaluation settings that we deem highly unlikely to appear in real world setting in order
to achieve a noteworthy recovery rate. Thus, for attacks to work given either query logs
or artificial distributions, the attacker requires high levels of auxiliary information and a
significant number of issued queries,i.e., the expected length of the query sequence for an
attack to work is at least an order of magnitude greater than the highest amount of queries
per user in both AOL and TAIR. Furthermore, requiring access to the clients exact query

72

6 Conclusion and Future Work

distribution, making sure that the adversarial knowledge is a superset of the client’s keyword
space and picking only the most frequent keywords over a small keyword spaces is what we
constitute to be unrealistic levels of auxiliary information in our evaluations. Conversely,
when an attack is evaluated over these settings it would naturally skim over the underlying
prohibitive computational cost, e.g., O(m(m? + t)) is the cost for IHOP attack [OK22] as
well as our attacks. This huge computational burden inherently hinders all proposed query
equality attacks in the literature to a variant degree.

Given the previously highlighted limitations, the goal of our work was not to only determine
the scenarios where the attacks would work, but rather distinguish the nuance present in the
more realistic evaluation settings, i.e., evaluations with query correlation scenarios where
the users are more likely to issue dependent queries. Furthermore, we have been able to
evaluate our attacks on relatively larger keyword spaces in comparison with IHOP [OK22] and
achieve significantly better recovery rates throughout most of our evaluation (cf. Tables 5.1,
Tables 5.2). Where our evaluations have shown that Decoder-Smpl in the Exact and All-Users
settings and Decoder achieve the best recovery rates, while IHOP failed at recovering the
threshold for both scenarios (i.e., the threshold is a subjective lower-bound that we set to
15% to denote the percentage of queries recovered for an attack to be successful). However,
it is also fair to say that none of the attacks work in more realistic settings such as the Split
and Other settings. Additionally, successful attacks need query sequences of a high length
that is often not observed in the real-world query logs we used. Moreover, it is important to
highlight that the computational overhead of all the attacks—ours included—could make
them prohibitive in practice. In fact, in order to run our experiments, we had to choose
specific users in the query logs and use a small number of states in the known-distribution
setting. For a broader scope to model different attack instances, the evaluation would take
many years to complete.

As previously highlighted, the efficacy of our new attacks and the IHOP attack[OK22] is
significantly higher “only” when a considerable number of queries have been issued and the
user’s original query sequence is present among others in the auxiliary knowledge of the
attacker.

6.2 Discussion & Guidlines

Guidance on how to interpret our results. We stress that the goal of our work is to better
understand the state-of-the-art leakage attacks and not to provide a security analysis of
various leakage profiles. In other words, the fact that an attack has low recovery rates on a
given leakage profile under real-world queries and data says nothing about the security of that
leakage profile. Understanding whether an attack improves on real-world data or does worse,
however, is important for several reasons. First, since the recovery rates of leakage attacks
often depend (strongly) on the query and data distributions, it is natural to ask how they
perform on a variety of distributions and especially on distributions that capture real-world
scenarios. Second, understanding how attacks perform on real-world data allows designers to

73

6 Conclusion and Future Work

improve their intuition about their designs and whether there is enough of a security margin
for practical deployment or whether they should switch to a scheme with a different leakage
profile. What constitutes the right security margin here is, of course, subjective and different
opinions are possible but making such evaluations available to the community is important.
A third reason that evaluating state-of-the-art attacks on a variety of datasets is important is
that it can help us to uncover new data and query characteristics that affect recovery rates.

Discussion of inference attacks results and limitations. As discussed above, our attacks
do well in a particular setting but leakage attacks should not only be evaluated in settings
where they work well. It is important that they be evaluated in a variety of settings including
ones where they might perform poorly. This is crucial in order to understand whether an
attack can be considered practical or not and points us to settings where cryptanalysis can be
improved.

Particularly, our results indicate that the success of the currently-known attacks exploiting
the query equality pattern is not very realistic in the dependent-query case. For one, attacks
require a lot of issued queries to work (often more than 10*). However, especially for keyword

search of end users, these amounts may not occur in many realistic cases!.

With this in mind, we note that all three attacks required a lot of auxiliary knowledge. More
precisely, in our evaluations, the attacks did not perform well given auxiliary sequences that
did not include the client’s exact query sequence. Furthermore, the attacks are also very
computationally expensive, running in O(m?(m + t)) time, where m is the number of unique
keywords and t is the length of the query sequence. For this reason, both our evaluation and
the one of [OK22] were only done on small values of m; 500 in [OK22] and up to 1500 in
ours. In many realistic settings, however, a much higher value of m would be expected and
the attacks’ computational cost may become prohibitive. For example, for m = 2!°, which is
approximately the number of keywords in the English Wiktionary [Wik22], the attacks would
take over 2°7 steps. Because of this, none of the experiments conducted in this work or in
[OK22] tell us how the attacks would perform on query distributions over large keyword
spaces.

Despite most evaluations being rather contrived, e.g., by ensuring the keyword universes of
the user and of the attacker information are equal (like in [OK22]) or giving the attacker
exact knowledge of private data, attacks should also not be ignored. For example, an ESAs
instance with an extremely limited and publicly known keyword universe may be much more
susceptible to our attacks than most other instances. An instance where an attacker may
actually already know private data may also be much more susceptible than those where the
attacker did not obtain such already significant information. Thus, our analyses underline the
nuance of ESAs cryptanalysis and that when drawing conclusions about leakage attacks, many
aspects require careful consideration for determining how concerning attacks are regarding a
particular ESAs deployment.

!For instance, the highest amounts of queries per user are 8334 and 5410 for AOL [PCT06] and TAIR
[ECW™*14], respectively.

74

6 Conclusion and Future Work

Given these limitations, we do not believe that, at this stage, query-recovery attacks in the
dependent-query setting are practical and can be characterized as “devastating” or as “severe
threats”. Nevertheless, even theoretical leakage attacks are important as they point us towards
potential weaknesses in designs and, often, lay the groundwork for future more practical
attacks.

6.3 Future directions

The risk posed by leakage attacks is hardly an abstract one, figuring out the impact of
attacking a specific leakage profile in a practical real-world setting, presented multiple new
open-challenges. Despite the considerable efforts made by prior works, there hasn’t been
significant comprehensive work investigating these attacks beyond their underlying leakage
profile, and we believe that the conclusions that were drawn lack the nuance which could
only be depicted by evaluating data under realistic assumptions.

In order to continually advance our common understanding of leakage implications in real
world settings, we have conducted an extensive cryptanalytic re-evaluation of ESAs leakage,
where we explored whether a given leakage pattern, can be realistically exploited under
different assumptions over data and query distribution by an inference or a leakage abuse
attack in the passive, persistent, known-data setting.

Throughout our re-evaluation efforts, we have first provided a categorization of the different
attacks, leakage profiles leveraged by each, adversarial models and attack mode they rely on,
target information to be recovered, and the type/percentage of auxiliary information assumed
to be present. And based on the nuanced results we have uncovered, we believe that we
have made huge strides towards having a clear understanding of when leakage attacks work
and under which setting in order to evaluate their feasibility for large scale deployable ESAs
solutions.

However, a lot of challenges remain until we can achieve a more holistic view of the implication
of leakage under real-world settings. For that purpose, more studies of the effects of leakage
and of leakage suppression technics are still needed. Concretely, evaluating sampled-query
and sampled-data attacks [LZWT14; GLMP18; LMP18; GLMP19; GJW19; DHP21; OK21;
OK22], as well as improving the overheads of leakage suppression/mitigation techniques such
as [CLRZ18; KMO18; KM19; PPYY19; GKL*20; APP*21; GKM21; SOPK21].

Throughout our evaluations, we where restricted to one query log and similar artificial
distributions on many datasets. Luckily, researchers with access to proprietary data can now
use LEAKER for even tailored conclusions. Still, we hope that LEAKER will prove useful not
only to the encrypted search community, but indispensable for more interdisciplinary research
considerations, and will be extended and improved with new datasets and implementations
of new and state-of-the-art attacks, so that cryptographic mechanisms can be used to their
full potential.

75

7 Appendices

7.1 LEAKER Additional Empirical Evaluations

7.1.1 Evaluations for Most Active Users

We show further evaluations of the AOL and TAIR datasets in Figure 3 for the single user
setting using five users with the highest activity. Note that the results are not significantly
different to the least active users case in Figure 4.5 in Section 4.4.1. This confirms our
statistical analysis that activity does not influence the frequency of queries (cf. Section 7.2.2).
Further, we note an anomaly of a low amount of unique queries for AOL’s most active users,
resulting in equal query spaces for highest and lowest frequency.

7.1.2 Sampled-Data and Sampled-Query Attacks

We leave the evaluation of sampled-data and sampled-query attacks under real-world data as
future work. Properly modeling real-world auxiliary data is challenging since the auxiliary
data needs to come from a real-world distribution that is "close" to real-world query or data
distribution. Collections of datasets with these properties are hard to find.

come additional challenges. For example, of modeling the sample comprising the adversary’s
knowledge, which is more straightforward for the known-data and known-query cases, where
the adversary has direct access to parts of the original data. For instance, the original sampled-
data evaluation of IKK in [IKK12] applied Gaussian noise to the original co-occurrence
information to simulate attacker knowledge. Recent sampled-data attacks [DHP21; GPP21]
divide the dataset into two disjoint parts in their evaluations, one of which is given to the
adversary as knowledge while the other part is used as a target data collection. This provides
important knowledge how well adversaries can attack schemes with disjoint knowledge. For
an approach similar to ours incorporating data for real-world evaluations, we believe finding
actual distinct datasets like, e.g., a public sample and a private data collection being targeted,
would be interesting future work on this domain.

76

7 Appendices

7.1.3 Agnostic Reconstruction Range

The agnostic reconstruction range attack (ARR) [KPT20] is incapable of reconstructing
databases containing repeating values. To allow for evaluation on real-world data, we
add pre- and post-treatments, which circumvent this issue and result in an attack that can
recover repeating values. Our pre-treatment identifies repeating values and removes them
from the ARR input. This has the side effect of reducing the input size, which in turn
can result in runtime benefits. The post-treatment receives the output of ARR and then
repeats the values which were previously identified to be repeating. We refer to this new
attack as ARR if APPROXVALUE [GLMP19] is used to approximate order(N), and as ARR-OR
if order(N) is leaked directly. They are shown in Alg. Algorithm 1. We note that this is
not the only way ARR could be extended for repeating values and that future approaches
might prove more fruitful. However, our approach already uncovers a significant amount of
repetitions (cf. Section 4.4.2).

Our pre-treatment identifies repeating values based on the fact that the identifiers of repeating
values always co-occur in all query responses. Concretely, we observe that the first (as
determined by the ordering) identifier of these repeating values will never have the highest
order in a query response. The converse holds true for the last identifier and all identifiers
in between will be neither the highest nor the lowest. We use these observations to identify
co-occurring tuples by determining the identifiers that never occur as minima or maxima in
the query responses and then searching for candidate sequences that satisfy these constraints.
Additionally, we require that the start of the candidate occurs as a minimum and that the end
occurs as a maximum, which ensures that our candidates do not overlap.

An issue that arises from this approach are false positives, which could occur if so few queries
are issued that unequal values always co-occur. To mitigate this, we require that these tuples
appear in at least minW distinct queries; this threshold can be set empirically.

7.1.4 ARR with Repeating Values

Agnostic Reconstruction Range (ARR) [KPT20] can be slightly modified in order to also cover
the case of repeating values, i.e., a non-injective mapping from records to values [KPT20]. This
can be achieved by allowing the distance between values to be 0 and requires a deviation from
the original pseudocode of [KPT20] since the employed error function would be undefined if
a distance of 0 was to be used. Concretely, for finding the distance L; = e; —e;_; between
ordered data collection entries e; and e;_;, an error function E between pairs L;, L;, j > i and
the support size ii, ; estimating L; ; = L; - L; is used for finding the minimum solutions L;, L,
thereby reconstructing the (ordered) data collection. The original error function E5(L;, L;) =
log(L;)+log(L j)—log(ii’ ;) stems from a logarithmic transform of products into sums, allowing
for an efficient representation of the optimization problem with a convex, linear function.
However, this prevents a solution L; to be 0, thus assuming no repeated values. the
authors do not suggest that this function should be used for repeating values We therefore

77

7 Appendices

Algorithm 1 ARR

Input: Query equality pattern geq (N,ql, e ,qt); Response identifier pat-
tern rid(N,qq,...,q,); Ordering of the database entries order(N) = (id;,id;...,id,);
Database universe [N]; Confidence threshold minW

Output: Approximate reconstruction (&, 8,,...,&,)

minima « set()

maxima « set()

: for all unique R € rid do

minima.add (min({i :id; € order A id; ER}))

maxima.add (max ({i :id; €order Aid; € R}))
end for
neverMin < [n]\ minima
neverMax « [n] \ maxima
cand — {(i,...,i+j):j=1
A1 € neverMax \ neverMin
Ai+1,...,i+j—1 & neverMin N neverMax
Al+j € neverMin \ neverMax }
10: count(C) « |[{Rerid:VieC :id; €R}|
11: dup « {C € cand : count(C) > minW }
12: toRem « {(id;yq...,1id;y;) 1 (i,...,i+j) €dup}
13: order’ « order without identifiers from toRem
14: rid’ < rid without elements from toRem
15: Ordered ¥4, ...,7, < ARR(qeq, rid’,order’,[N])

Rl

0 e N U

16: 1«1

17: for all k € [p] do

18: if i starts a sequence C of dup then
19: j < |C|

20: €isersCipj1 Vg
21: ie—i+]

22: else

23: éi — ljk

24: i—i+1

25: end if

26: end for

27: Return €, ..., ¢, permuted according to order

use Eq(L;, L;) =(L;-Lj— ﬁi,j), which was introduced in [KPT20], as the error function to
cover the more general and realistic case of repeated values occurring in the data collection.
Additionally, the default value for lengths needs to be set to 0 rather than 1. Changing the
error function also results in a new optimization problem, which is not convex in general.

78

7 Appendices

As a result of the more complex optimization problem, we noticed increased runtimes and
attacking our MIMIC instances became infeasible (cf. Section 4.4.2.4).

7.2 LEAKER Additional Data

7.2.1 Alternate Sources and Pre-Processing

Search engines. There are other query logs we could have used, including from the Ex-
cite [Jan06], Yandex [Yan14], and Sogou [Sog08; LMZ"11] search engines or from Yahoo!
Answers [Yah16] or the TREC session track [NIS14]. We preferred the AOL dataset, however,
due to its large size and the fact that it comes divided by user.

The AOL query log contains queries issued between March 1st and May 31st, 2006. The
query text and query time are stored in plain; the client id is a pseudonym. At the latest
when journalists prominently identified a client contained in the log [BZ06], it became clear
that the release of pseudonymized query logs is a severe violation of privacy and, as a result,
few logs have subsequently been released, with the AOL log remaining heavily used as a
basis for query analysis. We discarded the 1 000 most active users from the data because they
appeared to be bots. Our processed log AOL yields 52 287 049 queries (2862476 unique
keywords) by 656 038 users. Also, 67 383 of the 2.9M keywords of the AOL query log can be
found in the data collection which provides us with a large dataset.

Genetic. The TAIR query log contains all queries issued between January 1st, 2012 and
April 30th, 2013 and is associated with user sessions. To obtain the TAIR data collection state
at the time of the queries, we use the Araport11 release [Phol1] together with the TAIR 2013
update data [Pho13]. Out of the 650k queries, 5272 can be found in the collection, giving us
a sufficiently large dataset!.

Scientific data. We also identified SQLShare [JMH"16] as a potential dataset. It contains
a range of scientific measurements by physicists, biologists and social scientists. However,
after integrating it and analyzing the query logs we found very few range queries; a total of
12. We therefore discarded this dataset, though it could prove useful in the future if more
relevant queries are added.

Census data. The SPARTA project [MIT15] includes data and SQL query generation based
on census data. We did not use this in our work, as the queries are generated randomly to fit
desired response lengths, but we believe this could potentially be useful in other evaluation
scenarios that require the generation of relational queries.

'We attribute the low size of the intersection between query and data to the missing publications and people
datasets, which have not been released for download.

79

7 Appendices

Ef 7 T WTESTIOW TN ESSNT TV ISRy T

1 Wm0 |0 WA 3\ w0 W0 e T o Wo oo W o 1 w0 10900 L2009 20002 L
= e e

Salaries Sales Insurance

Figure 1: Frequencies of numerical dataset values.

Ouery-Fraquency Distribation Cuery-Fragueancy Distribation Cuary-Fraqeency Distribution

e of sccurmancas
-
bar of sccurmances

"
N
bBar of scgurmanzas
&

| J
’_
|

108 1w 16 1ot an? 103! 10t 108 w? 1 1a¥ STl 103 1pk 10 1t 17 bL wt 10* 1o i
Rk of quer Rk of Query Rk of query

SDSS-M SDSS-L Zipf distribution (a = 5) re-
stricted to 0.002% of all queries

Figure 2: Query frequency distribution of SDSS query logs on the PhotoObjAll collection (here
scaled by x10°; N = 10455488) as well as an artificial Zipf distribution on a
random collection with N = 10*.

7.2.2 Statistical Analysis

We used LEAKER to analyze the datasets of Section 4.3 and describe relevant statistical
insights here.

7.2.2.1 Data Distributions

Fig. 1 shows the frequencies of values for the datasets that we can display without violating
access restrictions. Notice that Insurance has a significant skew towards low values, with
values greater than 10000 out of a maximum of N = 25425 being very rare outliers (8
out of 886). We note that this is also the case in all MIMIC data, in that most entries have a
low value: for MIMIC-T4, only 301 out of 8058 entries have a value greater than 20 out of a
maximum of N = 73; for MIMIC-PC only 9 out of 7709 entries have value greater than 500
out of a maximum of N = 2684; and for MIMIC-CEA only 25 out of 2844 entries have value
greater than 2500 out of a maximum of N = 9978.

80

7 Appendices

Figure 3: X-Y attack evaluations against AOL and TAIR. All evaluations are 5 x 5, except
for 3 x 3 evaluations done for COUNT V.2. 150 queries are drawn for each of the
most active users (single user setting; S) without replacement according to their
query frequency from the 500 most (H) or least (L) frequent queries in the query
log that are also contained in the partial knowledge, respectively. The resulting

Recovery Rate

Recovery Rate

ol T 7§/§ O —— ”?fi
0.81 f% - i —n ? 0.8 %H e f
=t F
3
0.6 1 —+— Count v.2 ‘; 0.6 1 —&— Count v.2 1
—<VolAn [|g —<VolAn
0.4 SelVolAn | § 0.4 SelVolAn |
~#- Subgraph-ID | ~ ~#- Subgraph-ID
—4— Subgraph-VL T;}“ —4— Subgraph-VL |
0.2 T L 0.2 }' _‘7 T i v‘-‘“
L1114 HEREET
0.0 I | 21 001 % ¢ 5 b =11
0 20 40 60 80 100 0 20 40 60 80 100
Partial Knowledge in % Partial Knowledge in %
S-H (freq(Q) =1739) S-L (freq(Q)=1739)
AOL
1.0 101 \olan
SelVolAn
0.8 4 0.8 1~ = Subgraph-ID
E —4— Subgraph-VL T ”?
0.6 1 S 064 — =
% L L
0.4 . VolAn § 0.4
SelVolAn
0.2 _m Subgraph-ID 0.2+ * /%
—— Subgraph-VL pe ‘;‘j
0.0 * : - i i 00+ 55— T
0 20 40 60 80 100 0 20 40 60 80 100
Partial Knowledge in % Partial Knowledge in %
S-H (freq(Q) = 2413) S-L (freq(Q) = 4.85)
TAIR

mean frequency is given by freq(Q).

81

7 Appendices

In contrast, this is clearly not the case for Salaries and Sales, where no such skew is noticeable
in Figure 1. Since we notice that different attacks behave very differently according to
whether this skew exists (cf. Section 4.4), we call the former case with the skew an uneven
data distribution in our potential general risk factors (cf. Section 4.1), and consequently we
denote the latter case as an even data distribution.

7.2.2.2 Keyword data - Frequency distribution

The frequency of queries has been identified as the main attack performance metric [BKM20;
RPH21] and, therefore, we analyzed the frequency distribution of queries issued in real-world
systems. In particular, [BKM20] already noted that keyword data usually follows the Pareto
principle, i.e., the probability mass function is heavy-tailed with the bulk of the keywords
appearing in a few documents. This was used by [BKM20] to argue that, because most
keywords appear in the tail with a low occurrence, most queries might have a very low
frequency as well. A similar argument for low-frequency keywords in real-world queries can
be found in [RPH21]. Being able to see which keywords are queried in real systems for the
first time, we noted that this is not the case for any of our data sources: The queries are
usually not from the tail of the data distribution and have a high frequency (a mean of 1 804
for AOL, 2 023 for TAIR and 326 for GMail). 2 Only Drive has a mean query frequency of 11.2,
which was considered as pseudo-low by [BKM20]. We conclude that, in our evaluations, users
are not interested in querying keywords of a low frequency and conjecture that they may rely
on the system’s ranking to obtain the desired results.

Additionally, we investigated if the activity of a user has an effect on their queries’ frequencies,
but found no correlation between number of queries and mean frequency (Pearson correlation
of about 0.1 for TAIR and 0.014 for AOL).

7.2.2.3 Range data - Query distribution

The core of range attack analysis has been the query distribution. The heavily-used uniform
distribution is an unlikely case in the real world, and while specific parametrizations of the
beta (family) distribution were considered [KPT20; KPT21] and already provide important
insights, these do not have any empirical basis. Using real query logs (cf. paragraph 4.3.2), we
investigated two major factors of query distributions: query frequencies and their widths.

We plot frequencies of all possible queries for SDSS-M and SDSS-L in Figure 2 as well as a
comparable Zipf distribution. The case of SDSS-S does not need to be plotted, as queries only
appear once or twice. The Zipf distribution has a probability mass function of
k—a
p(k)=7—,
¢(a)

2When analyzing AOL here, we restrict ourselves to the 25 000 most active users for the sake of feasibility.

82

7 Appendices

where { is the Riemann Zeta function and a is the shape parameter. This means that an
element’s frequency is inversely proportional to its rank among all elements according to
decreasing frequency. From Figure 2, we deduced that queries are roughly sampled according
to a Zipf distribution, with a high shape parameter (higher ranks are very unlikely) but this
only holds for a tiny fraction of queries.

We also looked at the query widths and found that they are fixed: SDSS-S either has a width
of 113 or 112, while sizes range between 161 and 173 for SDSS-M and 51 and 61 for SDSS-L.

Based on these empirical observations, we considered a new kind of query distribution in our
experiments for data without query logs, where queries are distributed according to Zipf, but,
in contrast to [KPT20; KPT21], they are restricted to specific widths and a fraction of possible
queries before the probabilities are assigned. However, since this analysis was confined
to one specific case, it might not be representative. While we consider a large fraction of
possible queries missing as intuitive, the fixed-sized widths might be unique to SDSS and we
expect more variable widths in other cases. We thus varied the upper bound of widths in our
experiments. For some attacks, a large upper bound (close to N) has been identified as a risk
factor (cf. Section 4.4).

7.2.3 Additional Real-World Data

We also consider the following data where the queries are not available, but the logs contain
relevant information.

Public Database Search. Our processed PubMed query log [Nat09] contains all 58 026 194
search queries issued during 1 034 098 client sessions in March 2008. Originally, it was used
to investigate search trends [IMNLO9]. Client session ids are pseudonyms and the query
keywords are not contained in the log, which makes a direct attack evaluation impossible.
However, the amount of query results, i.e., the selectivity, is stored for each query and we
can therefore analyze the selectivities and, hence, susceptibility to leakage attacks. We
use PubMed to model a public medical search use case, where the underlying data may be
public, but the queries are of a very sensitive nature.

Private Database Search. Search behavior for specialized private databases is publicly
available in the form of the Pocketdata query log [KACZ15], which contains about 45 Million
SQLite statements issued to smartphones of eleven participants of the University of Buffalo
gathered over multiple days up to one month of regular smartphone usage. It was gathered to
produce a test query set for mobile database use cases. We use its 33 301 694 SELECT queries
as basis for our Pocketdata query log and view each database of each client as a separate
database. With this, we obtain a query log over 4 614 databases. Though the query values
are hidden in this log, the result lengths, i.e., the selectivities, are recorded. We therefore
cannot run attacks on this log, but we can analyze the selectivities and infer how successful

83

7 Appendices

Figure 4: Query and keyword distributions (log-log scale) of query logs and corresponding
databases for AOL, TAIR, GMail-L, and Drive. The queries are aggregated over all
users.

attacks would be. We use Pocketdata to model SQLite queries on private specialized databases,
being automatically generated based on client behavior.

7.2.4 Statistical Analysis of Real-World Data

In particular, we are mostly interested in the selectivity distribution of keyword queries and
the query distribution of range queries. This type of analysis will show us how clients perform
queries and indicate how realistic the assumptions of prior work were. Based on this, we will
be able to estimate the general success of leakage attacks before showing the performance of
specific attacks in concrete evaluations in Section 4.4. Due to space issues, we omit plots and
summarize the results.

7.2.4.1 Keyword Data

For keyword data, the selectivity of the queries has been identified as the main performance
metric [BKM20]. We therefore analyze the selectivity of queries issued in real-world systems.
Additionally, we investigate if the activity of a client has an effect on their queries’ selectivities.
When analyzing AOL here, we restrict ourselves to the 25 000 most active clients for the sake
of feasibility.

Looking at all our databases and query logs, we find that the individual keyword distributions
roughly follow the Pareto principle, i.e., they are heavy-tailed with the bulk of the keywords
appearing in a few documents, and some keywords appearing in many documents.

We observe that, contrary to what has been done in previous work, one cannot make a
claim about the selectivity of queries by just observing the database distribution or the

84

7 Appendices

oy S ity Gkl el - o e Gnny Bty B riniien o jeevendin e frckitduin Shisey Sbmativly Brabrnition of . P b Gy by Bibubion o pdmred-e e

AOL PocketData TAIR PubMed

Q- w3 st ey S Cumry b i Dbt o sy G iy i’

GMail-L Drive
Figure 5: Query log query selectivity distributions (log-log scale).

query distribution. This is because across all evaluated data, we find that there is no linear
correlation between a query’s frequency and its selectivity in the database. For instance, the
mean Pearson correlation coefficient between query frequency and its selectivity of all TAIR
clients is just about 0.1, while the one for the AOL clients is 0.014.

What matters instead in a real system is the selectivity of the issued queries, i.e., the combined
query-selectivity distribution, which we can compute even for the Pocketdata and PubMed
query logs, where no keywords are available but the corresponding selectivities are stored.
Our results indicate that in the evaluated systems, clients’ queries generally have a very high
selectivity for both public and private data. The rounded mean selectivities over the multi-set
of all queries issued by all clients/instances are 1804 for AOL, 176 for Pocketdata, 2 023
for TAIR, and 24 198 for PubMed. This is also the case for the queries issued on private GMail
data, with the mean of the mean selectivities being 326. Notably, GMail-S has a significantly
lower mean selectivity of 61.7, which we still consider high because attacks perform relatively
well on it (cf. Section 4.4.1). The mean selectivity is low (11.2) only for Drive.

Furthermore, we investigate if a client’s activity influences their behavior with regards to
leakage attacks. Frequent clients might produce a lot of high-selectivity queries, whereas
occasional clients might be interested in more specific information. In contrast to that
intuition, we discover that a client’s activity does not influence the selectivity of their queries. We
cannot come to a conclusion for private data due to insufficient client activity information.

7.2.4.2 Range Data

The central part in evaluating the effectiveness of leakage attacks on range databases has
been the query distribution. Until now, range queries have only been modeled very artificially,

85

7 Appendices

AOL PocketData TAIR PubMed

Figure 6: Mean query selectivity of all AOL, Pocketdata, and TAIR users, and the 100 000
least active PubMed users/instances (sorted by descending activity).

mostly via uniformly distributed queries [KKNO16; LMP18; GLMP19; KPT20] or distributions
that result in all possible elementary volumes [GLMP18; GJW19]. Since a uniform distribution
is considered to be an unlikely real-world distribution, specific Zipf-like distributions were
considered in [KPT20]. It is important to note that all these distributions eventually provide
all possible queries or all elementary queries. The only exception is [GJW19], which allows for
a limited amount of missing queries within certain query windows. However, all distributions
were created by intuitions about possible user behavior and do not have any empirical basis.
Using the SDSS query logs (cf. paragraph 4.3.2), we are the first to take a look at two major
factors of real range query distributions: query frequencies and their window sizes.

We plot the frequencies of all possible queries for SDSS-M and SDSS-L in Figure 2 as well as
a comparable artificial distribution. Here, we scale by x10° to give more precision in the
analysis. While this still incurs a precision loss in the database, it does not lose precision in
the issued queries. The distribution for SDSS-S does not need to be plotted: only a fraction
of 1.464 x 10713 of possible queries occur twice, while a fraction of 2.593 x 107! of possible
queries occur once. Figure 2 also displays an artificial Zipf distribution with the probability
mass function e

¢(a)’

where (is the Riemann Zeta function and a is the shape parameter. From the distributions
of SDSS-M and SDSS-L, we deduce that queries are roughly sampled according to a Zipf
distribution with a high shape parameter (higher ranks are very unlikely), but this only holds
for a tiny fraction of queries. In the smaller SDSS-S log, queries are mostly unique, but most
possible queries do not occur at all as well.

p(k)=

We also look at the distribution of windows and find that, across our SDSS logs, the window
sizes are relatively fixed: 10.6% of the multiset of SDSS-S queries have a window of 113
and the remaining queries have a window of 112. For SDSS-M, windows range between 161
and 173, with 54.9% being 173 and 27.1% being 161. In SDSS-L, the windows are between 51
and 61, with 29.5% being 51 and 23.4% being 61.

86

7 Appendices

7.3 LEAKER Code Snippet

We provide example LEAKER implementations in Listings 7.1 and Listing 7.2.

Listing 7.1: Slightly simplified example of LEAKER code for implementing the basic count
attack (Algorithm 1 of [CGPR15]) using co leakage.

1 class BasicCount(KeywordAttack):

2 def __init__(self, known_data_collection):

3 # Set up self._known_keywords the set of known keywords, self._known_coocc the known
co-occurence matrix, and _known_unique_rlens mapping unique rlens to known
keywords.

4

5 @classmethod

6 def required_leakage(cls):

7 return [CoOccurrence()]

8

9 def _known_response_length(self, keyword):

10 #rlen is the diagonal of co matrix

11 return self._known_coocc.co_occurrence(keyword, keyword)

12

13 def __initialize_known_queries(self, queries, rlens):

14 return {i: self._known_unique_rlens[rlens[i]] for i, _ in enumerate(queries) if

rlens[i] in self._known_unique_rlens}
15

16 def recover(self, data_collection, queries):

17 coocc = self.required_leakage()[0](data_collection, queries)

18 rlens = [coocc[i][i] for i, _ in enumerate(queries)]

19

20 known_queries = self.__initialize_known_queries(queries, rlens)

21

22 while True:

23 unknown_queries = [i for i, _ in enumerate(queries) if i not in known_queries]

24 old_size = len(known_queries)

25 for i in unknown_queries:

26 candidate_keywords = [k for k in self._known_keywords if k not in
known_queries.values() and rlens[i] == self._known_response_length(k)]

27 for s in candidate_keywords[:]:

28 for j, k in known_queries.items():

29 if coocc[i][j] '= self._known_coocc.co_occurrence(s, k):

30 candidate_keywords.remove(s)

31 break

32 if len(candidate_keywords) == 1:

33 known_queries[i] = candidate_keywords[0]

34 if old_size >= len(known_queries):

35 break

36

37 uncovered = []

38 for i, _ in enumerate(queries):

39 if i in known_queries:

40 uncovered.append(known_queries[i])

41 else:

42 uncovered.append("")

87

7 Appendices

44 return uncovered

Listing 7.2: Simple example of LEAKER code for implementing the co pattern (without
pre-computation and caching).

1 class CoOccurrence(LeakagePattern):

2 def leak(self, data_collection, queries):
3 doc_ids = {q: map(lambda doc: doc.id(), data_collection(q)) for q in queries}
4 return [[len([i for i in doc_ids[qgp] if i in doc_ids[ql]l) for gp in queries] for

g in queries]

7.4 Markov Models

In our attacks that we present in (Sections 5.2.1, 5.2.2), we are interested in a setting where
the states of a Markov chain cannot be observed, i.e., are hidden, but the outcomes of another
process can be observed that is influenced by the hidden process. This describes a hidden
Markov model (HMM), which is a doubly embedded stochastic process where the first process
is hidden while the second one is observable. We provide a formal definition below.

Definition 7.4.1 (Stochastic Process). A stochastic process X on a countable set S =
{81,---,Sy} is a collection of random variables with values in S defined on a probability
space (2, F,Pr) such that

X=1{X, : n=0},

where Pr is the probability measure, F a family of events and 2 an event space.

The set S represents the state space of the stochastic process and X,, the random variable that
denotes the state of the process at step n.

Definition 7.4.2 (Finite-Dimensional). Given a stochastic process X = {X, : n=> 0} ona
countable set S = {Sq,---,Sy}, the finite dimensional of X is

Pr[XO = io,X] = i]) e ,Xn = in]:

forall iy,iy, -+ ,i, €S and for all n > 0.
The finite-dimensional is similar to what a probability mass function is for a distribution;
it characterizes a stochastic process. All different stochastic processes will include some

conditioning between its random variable, as it is the case for the Markov chain that we are
going to define below.

88

7 Appendices

Definition 7.4.3 (Hidden Markov Model (HMM)). A hidden Markov model (HMM) M is
composed of two processes X = {X,, € [#S] : n = 0} over a countable set S and Y = {Y, €
[#T] : n = 0} over a countable set T such that:

* X is a Markov chain parametrized by 2 = (P, u), and

* Pr[Y,=i|X,=jl=o0;, foralie[#S]and j € [#T].

52

Let O = (0; j)ic[#s] denote the observation probability, i.e., the probability of observing the
Jjel#T]
jth state of T from the ith hidden state of S. For simplicity, we write © = (T, O, u) to denote

a HMM M parameterized by T, O, and u.

Inference. In the setting of a HMM, given the observable information and the HMM pa-
rameters, information about the hidden process can be inferred. One instance is the Viterbi
algorithm [Vit67]. We detail Viterbi in Section 7.5. In short, given an HMM parameterized by
© = (T, 0, u), this dynamic programming algorithm determines the most likely explanation
of the sequence of hidden states of X up to a number of steps t that produced an observed
sequence of states q = (g, ,q,) of the observable process).

Learning. Conversely, another set of tasks associated with HMMs concern learning the
parameters. We consider the well-known Baum-Welch algorithm [Wel03] for this that finds
the HMM parameters that maximize the probability of making a given observation of a
sequence of states q = (q;, - ,q,) of the observable process). Particularly, we will use this
to obtain the transition matrix T for a given sequence of states. We present the algorithm
in Figure 8 of Section 7.5.

7.5 Markov Algorithms

We present the Viterbi algorithm in Figure 7 and the Baum-Welch algorithm in Figure 8. The
Viterbi algorithm [Vit67] takes as input a sequence of observed states 0 = (04, ,0,) and a
hidden Markov model HMM = (T, O, u). It outputs the most likely sequence of states of the
hidden Markov chain that produced o as well as an error score s. Note that the value s is only
calculated when the Viterbi algorithm is run as a subroutine of the Decoder-Smpl attack, but
not for Decoder. The Baum-Welch algorithm [Wel03] takes as input an observed sequence
o = (04,--+,0,) and outputs a local maximum of the hidden Markov model parameters
HMM = (T, O, u). Note that the algorithm has the convergence level as well as the number of
states hardcoded. The convergence level parameter can be tuned to obtain better accuracy.

89

7 Appendices

* Viterbi(HMM, 0):

1.
2.

parse o = (04, ,0,) and HMM = (T, O, u);

instantiate two zero-matrices 6 and ¢ of size t x n where n is the number of states
inT;

. foralli € [n], compute

61,i=Wu;"0;, and ¢;=0;

forall je{2,---,t} and i € [n], compute

6= {2% (Tk,i . 5j—1,k) 0o, and ¢ ; = argmaxycpy (Tk,i : 5j—1,k);

. set

re i= argmaxeer,)(6, x);
compute the error score
5= I?éﬁﬁ(‘st,k);
forje{t—1,---,1}, set

7= Qi

output r = (r,---,7,) and (optionally) s.

Figure 7: The Viterbi algorithm [Vit67].

90

7 Appendices

* Baum-Welch(o):
1. parse o =(o04,--,0,) and initialize count := 0;
2. instantiate a hidden Markov model HMM = (T, O, u) such that
a) populate T=(T; ;); je[n] such that,

i. compute T, ; & {0,1}%;
il. setT;;:=T;;/A; where A; =3 | T
b) populate O = (O, ;); je[n] Such that,

i3

i. compute O, ; & {0,1}%;
ii. setO;;:=0;;/A; where A; = Z?:l o]
c) setu:=(1/n,---,1/n);
3. while count < level,

i,j>

a) forallie€[n]and t’ <t, compute
n
@iy =W;*0; and a1 =0, ;- Z(a]‘,z/ 'Tj,i)
=1
b) foralli €[n]andt’' <t,compute

n
Bi,=1 and B, = Zﬁj,t’+1 “Tij " Owan),j
=

¢) calculate the following for all i,j € [n] and t' < t,

n -1
Yir = (ai,t’ : ﬁi,t’) : (E :aj,t’ : ﬂj,t’)
j=1

and,

n n 1
Eij = (ai,t’ “Tij Biear Ootlﬂ,j) . (E E :ai,t’ “Tij Bt Oom,j)

i=1 j=1

d) update the parameters for HMM for all i, j € [n],

t

t—1 t—1 -1 t -1
pi=vip and T;;= (Z gi,j,t’)'(Z Yi,t’) and O;; = (Z 1(ot/:j)'Yi,t’)'(Z Yi,f')

t'=1 t'=1 t'=1 t'=1

e) increment count;
4. output HMM = (T, O, u).

Figure 8: The Baum-Welch algorithm [Wel03].

91

7 Appendices

7.6 Markov Additional Empirical Evaluations

We present in Figure 9 the evaluation result when we vary the Hamming weight and fix
the number of states to 500. We present in Figure 10 the evaluation results of our known-
distribution attacks when the user queries are sampled from the Binomial-Zipf, Uniform and
Zipf distributions.

92

7 Appendices

14~ < stationary 14~ < stationary 14~ < stationary 14~ — Sstationary
Decoder-N-smpl T 4 Decoder-N-Smpl Decoder-N-Smpl Decoder-N-Smpl
0.8 4~ Decoder-B-smpl M 0.8 4~ Decoder-B-smpl 0.8~ Decoder-B-smpl 0.8 4~ Decoder-B-smpl
) & IHOP g & THOP g = IHOP g = IHOP
g g g g
~ ~ 4 = 4 3 4
% % 06 1 % 06 % 06
g g T 1 - o g
g g 04 I T g 04 T1% 0a
] S 04 T S 04 T S 04
& g] P ‘f & !
£ 0.2 + 0.2 - t 0.2 4 /I‘ T
—— _ yod _ o
- 0.0 F=——% i— & 0.0 F——4— % & 0.0 ——— *
5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10°
#Queries #Queries #Queries #Queries
14 14 14 14
0.8 4 0.8 4 0.8 4 0.8 4
o o o o
g g g g
‘; 0.6 é 0.6 ? 0.6 f; 0.6
g —< Stationary g —< Stationary g —< Stationary g —< Stationary
S 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl
g 0 g 0 g 0 g 0
& —&— Decoder-B-Smpl & —4—Decoder-B-Smpl & —4—Decoder-B-Smpl & —4—Decoder-B-Smpl
&= IHOP = IHOP & IHOP & IHOP
0.24 i 0.24 0.24 I 1 0.24
1 T . Py i
i 3 —+ it g —— =
0.0 —i = 0.0 0.0 — H 0.0 A— &=
10° 10 10° 5.10° 10° 10° 10* 10° 5.10° 10° 10* 10° 5.10°
#Queries #Queries #Queries #Queries

H-W=50 H-W=100 H-W =350 H-W =450
Figure 9: Our new attacks and the IHOP attack [OK22] evaluated on the Zipf-Zipf distribution
setting. Evaluations are done using a variable Hamming weight and a fixed number
of states = 500.

93

7 Appendices

— Stationary 19 19 19
— Decoder-N-Smpl
0.8 Decoder-B-Smpl 0.8 4 0.8 4 0.8 4
2 IHOP 2 El 2
g 2 2 2
% 064 < 061 Z 061 Z 061
§ g —< Stationary g —< Stationary g —< Stationary
8 044 8 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl
& I 1|2 —4— Decoder-B-Smpl 2 —4— Decoder-B-Smpl 2 —4— Decoder-B-Smpl
- THOP THOP THOP
0.24 /I I 0.24 - 0.24 - 0.24 -
R - —— ""'f'"" /j e j,:;
b I " F3 5 —5
0.0 & R " 0.0 : %] 00 B *] 0.0 = = =
10° 10* 10° 5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10°
#Queries #Queries #Queries #Queries
250 States 500 States 1000 States 1500 States
Evaluation on the Binomial-Zipf distribution.
14 14 14 14
0.8 4 0.8 4 0.8 4 0.8
g g g g
£ Z o6 Z o6 Z 06
% 06 : <o : <o . <o :
g —<— Stationary g —<— Stationary g —<— Stationary g —<— Stationary
2 04 Decoder-N-Smpl g 04 Decoder-N-Smpl g 04 Decoder-N-Smpl g 04 Decoder-N-Smpl
& —4— Decoder-B-Smpl & —a— Decoder-B-Smpl & —a— Decoder-B-Smpl & —4— Decoder-B-Smpl
THOP THOP THOP THOP
0.2 4 - 0.2 4 - 0.2 4 - 0.2 4 -
0.0 = = —* 0.0 = - = 0.0 = = = 0.0 = = =
10° 10* 10° 5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10°
#Queries #Queries #Queries #Queries
250 States 500 States 1000 States 1500 States
Evaluation on the Uniform distribution.
14 —<— Stationary 14 14 14
Decoder-N-Smpl
0.8 4 —4 Decoder-B-smpl 0.8 4 0.8 4 0.8 4
2 & THOP 2 El 2
z 2 2 2
% 064 Z 061 Z 061 Z 061
§ g —< Stationary g —< Stationary g —< Stationary
8 044 8 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl 8 044 Decoder-N-Smpl
& & —4— Decoder-B-Smpl & —4— Decoder-B-Smpl & —4— Decoder-B-Smpl
HOP IHOP IHOP
0.24 k- 0.24 - 0.24 - 0.24 -
e +]
0.0 —R 0.0 =g =cs 0 0.0 £ = & 0.0 & - -
10° 10* 10° 10* 10° 5.10° 10° 10* 10° 5.10° 10° 10* 10° 5.10°
#Queries #Queries #Queries #Queries

250 States 500 States

1000 States

Evaluation on the Zipf distribution.

1500 States

Figure 10: Our new attacks and the IHOP attack [OK22] evaluated in the known-distribution
setting. The results represent the average recovery rate over 30 runs.

94

[AAGG18]

[AAKM20]

[Age88]

[AHKM19]

[AKM19]
[AKSX04]
[Ama23]
[Anal8]

[APP*21]

[ARZB11]

[BBOO7]

[BCO11]

[BDOP04]

[BF17]

Bibliography

M. A. ABDELRAHEEM, T. ANDERSSON, C. GEHRMANN, C. GLACKIN. “Practical attacks
on relational databases protected via searchable encryption”. In: International
Conference on Information Security (ISC). 2018.

D. ADKINS, A. AGARWAL, S. KAMARA, T. MOATAZ. “Encrypted blockchain databases”.
In: ACM Conference on Advances in Financial Technologies (AFT). 2020.

AGENCY FOR HEALTHCARE RESEARCH AND QUALITY. “The National (Nationwide)
Inpatient Sample (NIS) of the Healthcare Cost and Utilization Project (HCUP)”.
https://www.hcup-us.ahrg.gov/nisoverview. jsp. Accessed 2022-10-17. 1988.

A. AGARWAL, M. HERLIHY, S. KAMARA, T. MoATAZ. “Encrypted databases for differ-
ential privacy”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2019.3
(2019).

G. AMJAD, S. KAMARA, T. MOATAZ. “Breach-Resistant Structured Encryption”. In:
Proceedings on Privacy Enhancing Technologies (Po/PETS ’19). 2019.

R. AGRAWAL, J. KIERNAN, R. SRIKANT, Y. XU. “Order preserving encryption for
numeric data”. In: International Conference on Management of Data (SIGMOD). 2004.

AMAZON S3. “Clients data and queries content discloses”. hhttps://aws.amazon.
com/s3/. Accessed 2023-11-17. 2023.

ANACONDA, INC. “Numba - A just-in-time compiler for numerical functions in
Python”. http://numba.pydata.org. Accessed 2022-10-17. 2018.

G. AMJAD, S. PATEL, G. PERSIANO, K. YEO, M. YUNG. “Dynamic Volume-Hiding
Encrypted Multi-Maps with Applications to Searchable Encryption”. In: JACR
ePrint 765 (2021).

R. ADA Popa, C. REDFIELD, N. ZELDOVICH, H. BALAKRISHNAN. “CryptDB: Protecting
confidentiality with encrypted query processing”. In: ACM Symposium on Operating
Systems Principles (SOSP). 2011, pp. 85-100.

M. BELLARE, A. BOLDYREVA, A. O'NEILL. “Deterministic and efficiently searchable
encryption”. In: Annual International Cryptology Conference (CRYPTO). 2007.

A. BOLDYREVA, N. CHENETTE, A. O'NEILL. “Order-preserving encryption revisited:
Improved security analysis and alternative solutions”. In: Annual Cryptology Con-
ference (CRPYTO). 2011.

D. BONEH, G. D1 CRESCENZO, R. OSTROVSKY, G. PERSIANO. “Public key encryption
with keyword search”. In: International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). 2004.

R. BosT, P-A. FOUQUE. “Thwarting leakage abuse attacks against searchable
encryption - A formal approach and applications to database padding”. In: IACR
ePrint 1060 (2017).

95

https://www.hcup-us.ahrq.gov/nisoverview.jsp
hhttps://aws.amazon.com/s3/
hhttps://aws.amazon.com/s3/
http://numba.pydata.org

Bibliography

[BGC™18]

[BKM20]

[BMO17]

[Bos16]
[BSW11]
[BZ06]

[CGKO06]

[CGKS95]

[CGPR15]

[Chal2]

[Cit18]

[CJJ*13]

[CJJ*14]

[CK10]

[CLO7]

[CLRZ18]

V. BINDSCHAEDLER, P GRUBBS, D. CASH, T. RISTENPART, V. SHMATIKOV. “The Tao of
inference in privacy-protected databases”. In: Proceedings of the VLDB Endowment
11.11 (2018).

L. BLACKSTONE, S. KAMARA, T. MOATAZ. “Revisiting leakage abuse attacks”. In:
Network and Distributed System Security Symposium (NDSS). 2020.

R. BosT, B. MINAUD, O. OHRIMENKO. “Forward and Backward Private Searchable
Encryption from Constrained Cryptographic Primitives”. In: ACM Conference on
Computer and Communications Security (CCS’17). 2017.

R. BOST. “Sophos - Forward Secure Searchable Encryption”. In: ACM Conference on
Computer and Communications Security (CCS ’16). 20016.

D. BONEH, A. SAHAI, B. WATERS. “Functional encryption: Definitions and challenges”.
In: Theory of Cryptography Conference (TCC). 2011.

M. BARBARO, T. J. ZELLER. “A face is Exposed for AOL Searcher No. 4417749”. New
York Times. 2006.

R. CURTMOLA, J. GARAY, S. KAMARA, R. OSTROVSKY. “Searchable Symmetric Encryp-
tion: Improved Definitions and Efficient Constructions”. In: ACM Conference on
Computer and Communications Security (CCS ’06). ACM, 2006, pp. 79-88.

B. CHOR, O. GOLDREICH, E. KUSHILEVITZ, M. SUDAN. “Private information retrieval”.
In: Annual Symposium on Foundations of Computer Science (FOCS). 1995.

D. CAsH, P GRUBBS, J. PERRY, T. RISTENPART. “Leakage-abuse attacks against
searchable encryption”. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2015.

M. CHAPUT. “Whoosh”. https://whoosh.readthedocs.io/en/latest/. Accessed
2022-10-17. 2012.

CI1TY OF NEW YORK. “Recoupment for damaged city-owned property”. https://
data . cityofnewyork . us/Transportation/Recoupment - for - Damaged - City -
owned-Property/68k5-hdzw. Accessed 2022-10-17. 2018.

D. CAsH, S. JARECKI, C. JUTLA, H. KRAWCZYK, M.-C. Rosu, M. STEINER. “Highly-
scalable searchable symmetric encryption with support for boolean queries”. In:
Annual Cryptology Conference (CRYPTO). 2013.

D. CAsH, J. JAEGER, S. JARECKI, C. JUTLA, H. KRAWCZYK, M. RoSu, M. STEINER. “Dy-
namic Searchable Encryption in Very-Large Databases: Data Structures and Im-
plementation”. In: Network and Distributed System Security Symposium (NDSS '14).
2014.

M. CHASE, S. KAMARA. “Structured Encryption and Controlled Disclosure”. In:
Advances in Cryptology - ASIACRYPT ’10. Vol. 6477. Lecture Notes in Computer Science.
Springer, 2010, pp. 577-594.

G. V. CORMACK, T. R. LyNAM. “TREC public spam corpus”. https://plg.uwaterloo.
ca/~gvcormac/treccorpus07/. Accessed 2022-10-17. 2007.

G. CHEN, T.-H. LAI, M. K. REITER, Y. ZHANG. “Differentially private access patterns for
searchable symmetric encryption”. In: IEEE Conference on Computer Communications
(INFOCOM). 2018.

96

https://whoosh.readthedocs.io/en/latest/
https://data.cityofnewyork.us/Transportation/Recoupment-for-Damaged-City-owned-Property/68k5-hdzw
https://data.cityofnewyork.us/Transportation/Recoupment-for-Damaged-City-owned-Property/68k5-hdzw
https://data.cityofnewyork.us/Transportation/Recoupment-for-Damaged-City-owned-Property/68k5-hdzw
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/

Bibliography

[CMO5]

[Coh15]
[Co009]

[DDC16]

[DDF*16]

[DHP21]

[DPP*16]

[DPPS20]

[DR*14]

[ECW*14]

[FJK*15]

[FMA*20]

[FVY*17]

[Gen09]

[GIW19]

[GKL*20]

Y.-C. CHANG, M. MITZENMACHER. “Privacy preserving keyword searches on remote
encrypted data”. In: International Conference on Applied Cryptography and Network
security (ACNS). 2005.

W. W. COHEN. “Enron dataset”. https://www.cs.cmu.edu/~./enron/. Accessed
2022-10-17. 2015.

J. L. COOLIDGE. “The gambler’s ruin”. In: The Annals of Mathematics 10.4 (1909),
pp. 181-192.

E B. DURAK, T. M. DUBUISSON, D. CASH. “What else is revealed by order-revealing
encryption?” In: ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2016.

S. DEVADAS, M. v. DK, C. W. FLETCHER, L. REN, E. SHI, D. WICHS. “Onion ORAM: A
Constant Bandwidth Blowup Oblivious RAM”. In: TCC 2016. 2016.

M. DAMIE, E HAHN, A. PETER. “A Highly Accurate Query-Recovery Attack against
Searchable Encryption using Non-Indexed Documents”. In: USENIX Security Sym-
posium (USENIX Security). 2021.

I. DEMERTZIS, S. PAPADOPOULOS, O. PAPAPETROU, A. DELIGIANNAKIS, M. GAROFALAKIS.
“Practical private range search revisited”. In: International Conference on Management
of Data (SIGMOD). 2016.

I. DEMERTZIS, D. PAPADOPOULOS, C. PAPAMANTHOU, S. SHINTRE. “SEAL: Attack mit-
igation for encrypted databases via adjustable leakage”. In: USENIX Security
Symposium (USENIX Security). 2020.

C. DWORK, A. ROTH. “The algorithmic foundations of differential privacy”. In:
Foundations and Trends in Theoretical Computer Science 9.3-4 (2014).

M. EscH, J. CHEN, S. WEISE, K. HASSANI-PAK, U. SCHOLZ, M. LANGE. “A query sugges-
tion workflow for life science IR-systems”. In: Journal of Integrative Bioinformatics
11.2 (2014).

S. FABER, S. JARECKI, H. KRAWCZYK, Q. NGUYEN, M. ROSU, M. STEINER. “Rich queries
on encrypted data: Beyond exact matches”. In: European Symposium on Research in
Computer Security (ESORICS). 2015.

E FALZON, E. A. MARKATOU, AKSHIMA, D. CASH, A. RIVKIN, J. STERN, R. TAMASSIA.
“Full database reconstruction in two dimensions”. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2020.

B. FULLER, M. VARIA, A. YERUKHIMOVICH, E. SHEN, A. HAMLIN, V. GADEPALLY, R. SHAY,
J. D. MITCHELL, R. K. CUNNINGHAM. “SoK: Cryptographically protected database
search”. In: I[EEE Symposium on Security and Privacy (S&P). 2017.

C. GENTRY. “Fully homomorphic encryption using ideal lattices”. In: ACM Sympo-
sium on Theory of Computing (STOC). 2009.

Z. Gul, O. JOHNSON, B. WARINSCHI. “Encrypted databases: New volume attacks
against range queries”. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2019.

P. GRUBBS, A. KHANDELWAL, M.-S. LACHARITE, L. BROWN, L. LI, R. AGARWAL, T. RIS-
TENPART. “Pancake: Frequency smoothing for encrypted data stores”. In: USENIX
Security Symposium (USENIX Security). 2020.

97

https://www.cs.cmu.edu/~./enron/

Bibliography

[GKM21]

[GLMP18]

[GLMP19]

[GMP16]

[GMWS87]
[GO96]
[Goh03]

[Gov18]

[GPP21]

[GPPJ18]

[GPPW20]
[Gro08]

[GSB*17]

[HEK12]

[HMW™20]

M. GEORGE, S. KAMARA, T. MOATAZ. “Structured encryption and dynamic leakage
suppression”. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). 2021.

P GRUBBS, M.-S. LACHARITE, B. MINAUD, K. G. PATERSON. “Pump up the volume:
Practical database reconstruction from volume leakage on range queries”. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS). 2018.

P GRUBBS, M.-S. LACHARITE, B. MINAUD, K. G. PATERSON. “Learning to reconstruct:
Statistical learning theory and encrypted database attacks”. In: I[EEE Symposium
on Security and Privacy (S&P). 2019.

S. GARG, P MOHASSEL, C. PAPAMANTHOU. “TWORAM: Efficient Oblivious RAM in Two
Rounds with Applications to Searchable Encryption”. In: Advances in Cryptology -
CRYPTO 2016. 2016, pp. 563-592.

O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to play any mental game”. In: ACM
Symposium on Theory of Computing (STOC). 1987.

O. GOLDREICH, R. OSTROVSKY. “Software protection and simulation on oblivious
RAMSs”. In: Journal of the ACM 43.3 (1996), pp. 431-473.

E.-J. GOoH. “Secure Indexes”. Tech. rep. 2003/216. See http://eprint.iacr.org/
2003/216. IACR ePrint Cryptography Archive, 2003.

GOVERNMENT DIGITAL SERVICE. “Organogram of Staff Roles & Salaries of Gov-
ernment Legal Department”. https://data.gov.uk/dataset/34d08a53-6b96-
4fb6 - b043 - 627e2b25840d / organogram- of - staff - roles - salaries. Accessed
2022-10-17. 2018.

Z. Gui, K. G. PATERSON, S. PATRANABIS. “Rethinking Searchable Symmetric Encryp-
tion”. In: IACR ePrint 879 (2021).

J. GHAREH CHAMANI, D. PAPADOPOULOS, C. PAPAMANTHOU, R. JALILI. “New construc-
tions for forward and backward private symmetric searchable encryption”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2018, pp. 1038-1055.

Z. Gui, K. G. PATERSON, S. PATRANABIS, B. WARINSCHI. “SWiSSSE: System-Wide
Security for Searchable Symmetric Encryption”. In: IACR ePrint 1328 (2020).

G. GROTHAUS. “General implementation of the PQ-tree algorithm”. https://
github.com/Gregable/pq-trees. Accessed 2022-10-17. 2008.

P GRUBBS, K. SEKNIQI, V. BINDSCHAEDLER, M. NAVEED, T. RISTENPART. “Leakage-abuse
attacks against order-revealing encryption”. In: IEEE Symposium on Security and
Privacy (S&P). 2017.

Y. HUANG, D. EVANS, J. KATZ. “Private set intersection: Are garbled circuits better
than custom protocols?” In: Network and Distributed Systems Security Symposium
(NDSS). 2012.

C. R. HARRIS, K. J. MILLMAN, S. J. v. d. WALT, R. GOMMERS, P. VIRTANEN, D. COUR-
NAPEAU, E. WIESER, J. TAYLOR, S. BERG, N. J. SMITH, R. KERN, M. PicUs, S. HOYER,
M. H. v. KERKWIJK, M. BRETT, A. HALDANE, J. E d. Rfo, M. WIEBE, P PETERSON,
P GERARD-MARCHANT, K. SHEPPARD, T. REDDY, W. WECKESSER, H. ABBASI, C. GOHLKE,
T. E. OLIPHANT. “Array programming with NumPy”. In: Nature 585.7825 (2020).

98

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216
https://data.gov.uk/dataset/34d08a53-6b96-4fb6-b043-627e2b25840d/organogram-of-staff-roles-salaries
https://data.gov.uk/dataset/34d08a53-6b96-4fb6-b043-627e2b25840d/organogram-of-staff-roles-salaries
https://github.com/Gregable/pq-trees
https://github.com/Gregable/pq-trees

Bibliography

[HZNF15]

[IDC23]

[IKK12]

[IKK14]

[IMNLO9]
[Jan06]
[JCMBOO]

[JMH*16]

[JPL13]

[JPS*16]

[JPS21]

[JS06]

[JS19]

[KACZ15]

[Kam15]
[KGV83]

[KKI*17]

J. HEURIX, P ZIMMERMANN, T. NEUBAUER, S. FENZ. “A taxonomy for privacy enhancing
technologies”. In: Computers & Security 53 (2015).

IDC GLOBAL. “The Worldwide IDC Global DataSphere five-year forecast 2022-
2026”. https://www.idc.com/getdoc.jsp?containerId=US49018922. Accessed
2023-11-17. 2023.

M. S. IsLaM, M. Kuzu, M. KANTARCIOGLU. “Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation”. In: Network and Distributed System
Security Symposium (NDSS). 2012.

M. S. IsL.aM, M. Kuzu, M. KANTARCIOGLU. “Inference attack against encrypted range
queries on outsourced databases”. In: ACM Conference on Data and Application
Security and Privacy (CODASPY). 2014.

R. ISLAMAJ DOGAN, G. C. MURRAY, A. NEVEOL, Z. LU. “Understanding PubMed® user
search behavior through log analysis”. In: Database (2009).

B. J. JANSEN. “Search log analysis: What it is, what’s been done, how to do it”. In:
Library & Information Science Research 28.3 (2006).

S. JONES, S. J. CUNNINGHAM, R. MCNAB, S. BODDIE. “A transaction log analysis of a
digital library”. In: International Journal on Digital Libraries 3.2 (2000).

S. JAIN, D. MORITZ, D. HALPERIN, B. HOWE, E. LAZOWSKA. “SQLShare: Results
from a multi-year SQL-as-a-service experiment”. In: International Conference on
Management of Data (SIGMOD). 2016.

D. JIANG, J. PEL, H. LI. “Mining search and browse logs for web search: A survey”.
In: ACM Transactions on Intelligent Systems and Technology (TIST) 4.4 (2013).

A. E. JOHNSON, T. J. POLLARD, L. SHEN, H. L. LI-WEI, M. FENG, M. GHASSEMI, B. MOODY,
P SzoLoVITS, L. A. CELIL, R. G. MARK. “MIMIC-III, a freely accessible critical care
database”. In: Scientific Data 3.1 (2016).

M. JURADO, C. PALAMIDESSI, G. SMITH. “A formal information-theoretic leakage
analysis of order-revealing encryption”. In: 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). IEEE. 2021, pp. 1-16.

B. J. JANSEN, A. SPINK. “How are we searching the World Wide Web? A comparison
of nine search engine transaction logs”. In: Information Processing & Management
(IP&M) 42.1 (2006).

M. JURADO, G. SMITH. “Quantifying information leakage of deterministic encryp-
tion”. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop. 2019, pp. 129-139.

O. KENNEDY, J. AJAY, G. CHALLEN, L. ZIAREK. “Pocket data: The need for TPC-
MOBILE”. In: Technology Conference on Performance Evaluation and Benchmarking.
2015.

S. KAMARA. “Encrypted Search”. In: XRDS 21.3 (2015), pp. 30-34.

S. KIRKPATRICK, C. D. GELATT, M. P VECCHI. “Optimization by simulated annealing”.
In: Science 220.4598 (1983).

E. KACPRZAK, L. M. KOESTEN, L.-D. IBANEZ, E. SIMPERL, J. TENNISON. “A query log
analysis of dataset search”. In: International Conference on Web Engineering (ICWE).
2017.

99

https://www.idc.com/getdoc.jsp?containerId=US49018922

Bibliography

[KKM*22]

[KKM*23]

[KKM*24]

[KKNO16]

[KM17]

[KM19]

[KM23]
[KMO18]

[KMPP22]

[KMPQ21]
[KMZZ20]
[KP13]

[KPR12]

[KPT19]

[KPT20]

[KPT21]

S. KAMARA, A. KATI, T. MOATAZ, T. SCHNEIDER, A. TREIBER, M. YONLI. “SoK: Crypt-
analysis of Encrypted Search with LEAKER - A framework for LEakage AttacK
Evaluation on Real-world data”. In: IEEE European Symposium on Security and Privacy
(EuroS&P). 2022.

S. KAMARA, A. KaTi, T. MOATAZ, J. DEMARIA, A. PARK, A. TREIBER. “Repository for
MAPLE: MArkov Process Leakage attacks on Encrypted Search”. https://github.
com/anonymous - repo-submission/artifact. 2023.

S. KAMARA, A. KATI, T. MOATAZ, J. DEMARIA, A. PARK, A. TREIBER. “MAPLE: MArkov
Process Leakage attacks on Encrypted Search”. In: The annual Privacy Enhancing
Technologies Symposium (PETS). 2024.

G. KELLARIS, G. KoLL1OS, K. NissiM, A. O’'NEILL. “Generic attacks on secure out-
sourced databases”. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2016.

S. KAMARA, T. MOATAZ. “Boolean searchable symmetric encryption with worst-
case sub-linear complexity”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT). 2017.

S. KAMARA, T. MOATAZ. “Computationally Volume-Hiding Structured Encryption”.
In: Advances in Cryptology - Eurocrypt’ 19. 2019.

S. KAMARA, T. MOATAZ. “Bayesian Leakage Analysis”. Tech. rep. 2023.

S. KAMARA, T. MOATAZ, O. OHRIMENKO. “Structured encryption and leakage sup-
pression”. In: Annual International Cryptology Conference (CRYPTO). 2018.

E. M. KORNAROPOULOS, N. MOYER, C. PAPAMANTHOU, A. PsoMAS. “Leakage Inversion:
Towards Quantifying Privacy in Searchable Encryption”. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. 2022, pp. 1829-
1842.

S. KAMARA, T. MOATAZ, A. PARK, L. QIN. “A decentralized and encrypted national
gun registry”. In: I[EEE Symposium on Security and Privacy (S&P). 2021.

S. KAMARA, T. MOATAZ, S. ZDONIK, Z. ZHAO. “An Optimal Relational Database
Encryption Scheme”. In: IACR ePrint 274 (2020).

S. KAMARA, C. PAPAMANTHOU. “Parallel and Dynamic Searchable Symmetric En-
cryption”. In: Financial Cryptography and Data Security (FC’13). 2013.

S. KAMARA, C. PAPAMANTHOU, T. ROEDER. “Dynamic Searchable Symmetric Encryp-
tion”. In: ACM Conference on Computer and Communications Security (CCS ’12). ACM
Press, 2012.

E. M. KORNAROPOULOS, C. PAPAMANTHOU, R. TAMASSIA. “Data recovery on encrypted
databases with k-nearest neighbor query leakage”. In: [EEE Symposium on Security
and Privacy (S&P). 2019.

E. M. KORNAROPOULOS, C. PAPAMANTHOU, R. TAMASSIA. “The state of the uniform:
Attacks on encrypted databases beyond the uniform query distribution”. In: IEEE
Symposium on Security and Privacy (S&P). 2020.

E. M. KORNAROPOULOS, C. PAPAMANTHOU, R. TAMASSIA. “Response-hiding encrypted
ranges: Revisiting security via parametrized leakage-abuse attacks”. In: IEEE
Symposium on Security and Privacy (S&P). 2021.

100

https://github.com/anonymous-repo-submission/artifact
https://github.com/anonymous-repo-submission/artifact

Bibliography

[KS12]

[LDS*10]

[LMP18]

[LMZ*+11]

[LO13]

[LPS*18]

[LZWT14]
[MDO06]

[MFST21]

[MIT15]

[MT19]

[Nat09]

[Nat23]

[NBB*15]

[NHP*21]

[NIS14]

V. KOLESNIKOV, A. SHIKFA. “On the limits of privacy provided by order-preserving
encryption”. In: Bell Labs Technical Journal 17.3 (2012).

P LAMESCH, K. DREHER, D. SWARBRECK, R. SASIDHARAN, L. REISER, E. HUALA. “Using
the Arabidopsis information resource (TAIR) to find information about Arabidop-
sis genes”. In: Current Protocols in Bioinformatics 30.1 (2010).

M.-S. LACHARITE, B. MINAUD, K. G. PATERSON. “Improved reconstruction attacks on
encrypted data using range query leakage”. In: IEEE Symposium on Security and
Privacy (S&P). 2018.

Y. Liu, J. MIAO, M. ZHANG, S. MA, L. Ru. “How do users describe their information
need: Query recommendation based on snippet click model”. In: Expert Systems
with Applications 38.11 (2011).

S. Lu, R. OSTROVSKY. “Distributed Oblivious RAM for Secure Two-Party Computa-
tion”. In: TCC 2013. 2013.

S. LAIL, S. PATRANABIS, A. SAKZAD, J. K. Liu, D. MUKHOPADHYAY, R. STEINFELD, S.-E SUN,
D. Liu, C. Zuo. “Result pattern hiding searchable encryption for conjunctive
queries”. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2018.

C. Liu, L. ZHU, M. WANG, Y.-A. TAN. “Search pattern leakage in searchable encryp-
tion: Attacks and new construction”. In: Information Sciences 265 (2014).

G. MISHNE, M. DE RUUKE. “A study of blog search”. In: European Conference on
Information Retrieval (ECIR). 2006.

E. A. MARKATOU, E FALZON, W. SCHOR, R. TAMASSIA. “Reconstructing with Less:
Leakage Abuse Attacks in Two-Dimensions”. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2021.

MIT LINCOLN LABORATORY. “SPARTA Framework”. https://github.com/mit-
11/SPARTA. Accessed 2022-10-17. 2015.

E. A. MARKATOU, R. TAMASSIA. “Full database reconstruction with access and search
pattern leakage”. In: International Conference on Information Security (ISC). 2019.

NATIONAL INSTITUTES OF HEALTH. “PubMed log data”. https://www.ncbi.nlm.nih.
gov/CBBresearch/Lu/LogStudy/. Accessed 2022-10-17. 2009.

NATIONAL CYBER STRATEGY. “The UK Cyber Security Breaches Survey 2023”.
https://www . gov . uk/government/statistics/cyber - security - breaches -
survey - 2023/ cyber - security - breaches - survey - 2023. Accessed 2023-11-17.
2023.

H. V. NGUYEN, K. BOHM, E BECKER, B. GOLDMAN, G. HINKEL, E. MULLER. “Identifying
user interests within the data space-A case study with SkyServer”. In: International
Conference on Extending Database Technology (EDBT). 2015.

J. NING, X. HUANG, G. S. POH, J. YUAN, Y. LI, J. WENG, R. H. DENG. “LEAP: Leakage-
abuse attack on efficiently deployable, efficiently searchable encryption with
partially known dataset”. In: ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). 2021.

NIST. “TREC 2014 session track”. http://ir. cis. udel. edu/sessions/
guidelines14.html. Accessed 2022-10-17. 2014.

101

https://github.com/mit-ll/SPARTA
https://github.com/mit-ll/SPARTA
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/LogStudy/
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/LogStudy/
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cyber-security-breaches-survey-2023
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cyber-security-breaches-survey-2023
http://ir.cis.udel.edu/sessions/guidelines14.html
http://ir.cis.udel.edu/sessions/guidelines14.html

Bibliography

[NIS21]

[NKW15]

[Nor98]
[OK21]

[OK22]

[PCTO6]
[Pea05]

[Phol1]

[Pho13]

[PPYY19]

[PSTY19]

[PW16]

[PWLP20]

[RPH21]

[Sch95]

[SDS*13]

NIST. “Toward a PEC use-case suite (preliminary draft)”. NIST White Paper (Draft).
2021.

M. NAVEED, S. KAMARA, C. V. WRIGHT. “Inference attacks on property-preserving
encrypted databases”. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2015.

J. R. Norris. “Markov chains”. 2. Cambridge university press, 1998.

S. OvA, E KERSCHBAUM. “Hiding the access pattern is not enough: Exploiting search
pattern leakage in searchable encryption”. In: USENIX Security Symposium (USENIX
Security). 2021.

S. OvA, E KERSCHBAUM. “IHOP: Improved Statistical Query Recovery against
Searchable Symmetric Encryption through Quadratic Optimization”. In: USENIX
Security Symposium (USENIX Security). 2022.

G. PAss, A. CHOWDHURY, C. TORGESON. “A picture of search”. In: International
Conference on Scalable Information Systems (INFOSCALE). 2006.

K. PEARSON. “The problem of the random walk”. In: Nature 72.1865 (1905),
pp. 294-294.

PHOENIX BIOINFORMATICS. “Araport11 genome release”. https://www.arabidopsis.
org/download/index-auto.jsp?dir=%2Fdownload_files%2FGenes%2FAraportll_
genome_release. Accessed 2022-10-17. 2011.

PHOENIX BIOINFORMATICS. “TAIR data release”. https://www.arabidopsis.org/
download/index-auto.jsp?dir=%2Fdownload_files%2FPublic_Data_Releases%
2FTAIR Data_20131231. Accessed 2022-10-17. 2013.

S. PATEL, G. PERSIANO, K. YEO, M. YUNG. “Mitigating Leakage in Secure Cloud-Hosted
Data Structures: Volume-Hiding for Multi-Maps via Hashing”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019. ACM, 2019, pp. 79-93.

B. PINKAS, T. SCHNEIDER, O. TKACHENKO, A. YANAI “Efficient circuit-based PSI with
linear communication”. In: International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT). 2019.

D. PouLioT, C. V. WRIGHT. “The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption”. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2016.

R. PODDAR, S. WANG, J. LU, R. A. POPA. “Practical volume-based attacks on encrypted
databases”. In: IEEE European Symposium on Security and Privacy (EuroS&P). 2020.

R. G. ROESSINK, A. PETER, E HAHN. “Experimental review of the IKK query recovery
attack: Assumptions, recovery rate and improvements”. In: International Conference
on Applied Cryptography and Network Security (ACNS). 2021.

A. SCHWARZENBERG-CZERNY. “On matrix factorization and efficient least squares
solution.” In: Astronomy and Astrophysics Supplement, v. 110, p. 405 110 (1995),
p. 405.

E. STEFANOV, M. v. DIJK, E. SHI, C. FLETCHER, L. REN, X. YU, S. DEVADAS. “Path ORAM:
An Extremely Simple Oblivious RAM Protocol”. In: ACM Conference on Computer
and Communications Security (CCS ’13). 2013.

102

https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FGenes%2FAraport11_genome_release
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FGenes%2FAraport11_genome_release
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FGenes%2FAraport11_genome_release
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FPublic_Data_Releases%2FTAIR_Data_20131231
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FPublic_Data_Releases%2FTAIR_Data_20131231
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FPublic_Data_Releases%2FTAIR_Data_20131231

Bibliography

[SGT*07]

[Sog08]
[SOPK21]
[SS13]
[SWP00]

[VGO*20]

[Vit67]

[VMO17]

[Wal14]

[WBK*11]

[Wel03]
[Wik14]
[Wik22]
[WP17]
[WS12]

[Yah16]

V. SINGH, J. GRAY, A. THAKAR, A. S. SZALAY, J. RADDICK, B. BOROSKI, S. LEBEDEVA,
B. YaANNY. “SkyServer traffic report-The first five years”. In: arXiv preprint
cs/0701173 (2007).

SoGou, INC. “SogouQ”. http://www.sogou.com/labs/resource/q.php. Accessed
2022-10-17. 2008.

Z.SHANG, S. OYA, A. PETER, E KERSCHBAUM. “Obfuscated access and search patterns
in searchable encryption”. In: Network and Distributed System Security Symposium
(NDSS). 2021.

E. STEFANOV, E. SHI. “Multi-cloud oblivious storage”. In: ACM CCS 13. 2013.

D. X. SONG, D. WAGNER, A. PERRIG. “Practical techniques for searches on encrypted
data”. In: I[EEE Symposium on Security and Privacy (S&P). 2000.

P VIRTANEN, R. GOMMERS, T. E. OLIPHANT, M. HABERLAND, T. REDDY, D. COURNAPEAU,
E. BUROVSKI, P PETERSON, W. WECKESSER, J. BRIGHT, S. J. VAN DER WALT, M. BRETT,
J. WILSON, K. J. MILLMAN, N. MAYOROV, A. R. J. NELSON, E. JONES, R. KERN, E. LARSON,
C. J. CAREY, I. POLAT, Y. FENG, E. W. MOORE, J. VANDERPLAS, D. LAXALDE, J. PERK-
TOLD, R. CIMRMAN, I. HENRIKSEN, E. A. QUINTERO, C. R. HARRIS, A. M. ARCHIBALD,
A. H. RIBEIRO, E PEDREGOSA, P VAN MULBREGT, SCIPY 1.0 CONTRIBUTORS. “SciPy 1.0:
Fundamental algorithms for scientific computing in Python”. In: Nature Methods
17 (2020).

A. VITERBI. “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm”. In: IEEE transactions on Information Theory 13.2 (1967),
pp. 260-269.

C. VAN ROMPAY, R. MOLVA, M. ONEN. “A leakage-abuse attack against multi-user
searchable encryption”. In: Proceedings on Privacy Enhancing Technologies (PoPETs)
2017.3 (2017).

WALMART INC. “Walmart recruiting - Store sales forecasting”. https://www.kaggle.
com/c/walmart - recruiting - store- sales - forecasting/overview. Accessed
2022-10-17. 2014.

W. WEERKAMP, R. BERENDSEN, B. KOVACHEV, E. MELJ, K. BALOG, M. DE RIJKE. “People
searching for people: Analysis of a people search engine log”. In: ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR). 2011.

L. R. WELCH. “Hidden Markov models and the Baum-Welch algorithm”. In: IEEE
Information Theory Society Newsletter 53.4 (2003), pp. 10-13.

WIKIMEDIA FOUNDATION. “Simple English Wikipedia”. https://simple.wikipedia.
org/. Accessed 2022-10-17. 2014.

WIKIMEDIA FOUNDATION. “Wiktionary Statistics”. https://en.wiktionary.org/
wiki/Special:Statistics. Accessed 2022-10-31. 2022.

C. V. WRIGHT, D. PouL1OT. “Early detection and analysis of leakage abuse vulnera-
bilities”. In: Cryptology ePrint Archive (2017).

P WILLIAMS, R. SION. “Single round access privacy on outsourced storage”. In: ACM
Conference on Computer and Communications Security (CCS ’12). 2012, pp. 293-304.

YAHOO LABS. “Yahoo Labs Webscope language data”. https://webscope.sandbox.
yahoo.com/catalog.php?datatype=1&guccounter=1. Accessed 2022-10-17. 2016.

103

http://www.sogou.com/labs/resource/q.php
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/overview
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/overview
https://simple.wikipedia.org/
https://simple.wikipedia.org/
https://en.wiktionary.org/wiki/Special:Statistics
https://en.wiktionary.org/wiki/Special:Statistics
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&guccounter=1
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&guccounter=1

Bibliography

[Yan14]

[Yao82]

[YZGW20]

[Zhall]

[ZKMZ21]

[ZKP16]

YANDEX N.V. “Yandex personalized web search challenge 2014”. https://www.
kaggle.com/c/yandex - personalized-web- search- challenge/data. Accessed
2022-10-17. 2014.

A. C. YAO. “Protocols for secure computations”. In: Annual Symposium on Foundations
of Computer Science (FOCS). 1982.

J. YAO, Y. ZHENG, Y. GUO, C. WANG. “SoK: A systematic study of attacks in efficient
encrypted cloud data search”. In: International Workshop on Security in Blockchain
and Cloud Computing (SBC). 2020.

J. ZHANG. “Data use and access behavior in eScience: Exploring data practices
in the new data-intensive science paradigm”. Drexel University Philadelphia, PA,
2011.

Z. ZHAO, S. KAMARA, T. MOATAZ, S. ZDONIK. “Encrypted Databases: From Theory to
Systems”. In: Conference on Innovative Data Systems Research (CIDR). 2021.

Y. ZHANG, J. KATZ, C. PAPAMANTHOU. “All your queries are belong to us: The power
of file-injection attacks on searchable encryption”. In: USENIX Security Symposium
(USENIX Security). 2016.

104

https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data

4.1

4.2

g W N =

List of Figures

High-level overview of LEAKER’s major components and attacks and/or
statistics evaluation flow. Dashed arrows indicate optional usage. With the
exception of Extension, all parts can be used for both keyword and range
QUETIES. . v v e
Fraction of correctly uncovered queries of the attacks of [BKM20] on the TAIR
keyword database (cf. paragraph 4.3.1). Queries are (a) either taken from
the database [LDST10] (prior artificial style) or (b) from a client’s query
log (our real-world evaluation). Here, we use the queries of the respective
source least frequent in the database (lowest-selectivity). Parameters are the
same as in subsection 4.4.1..
Normalized mean absolute error of value reconstruction attacks on different
datasets using a truncated Zipf distribution. Captions include the respective
dataset’s general data distribution (cf. section 4.1, subsubsection 7.2.2.1)
identified as risk factors. i resp. j iterations were performed for GENKKNO
and APPROXVAL resp. LMP, ARR,and APA..
MCE of count reconstruction attacks on I using a x distribution. i displays
how many iterations were performed.

Our attack: Stationary. i e
Our attack: DeCoder. v vttt e e e e
The Obv-Nvariant. ittt e e et e e
The Obv-Bvariant.ttt ittt
Our inference attack: *-Smpl, where * is a placeholder for Stationary and
Decoder. e e e e e e e e
Our new attacks and the IHOP attack [OK22] evaluated against AOL (top)
and TAIR (bottom) in the known-sample setting for the Exact, All, Other and
Split scenarios (from lefttoright)..
Our new attacks and the IHOP attack [OK22] evaluated on the Zipf-Zipf
query distribution. All evaluations are done using a fixed minimum Hamming
weight = 2. . . . e

Frequencies of numerical dataset values.
Query frequency distribution of SDSS query logs on the DPhotoObjAll col-
lection (here scaled by x10°; N = 10455488) as well as an artificial Zipf
distribution on a random collection with N =10%.

105

21

29

(SN

10

4.1

4.2

X-Y attack evaluations against DAOL and DTAIR. All evaluations are 5 x 5,
except for 3 x 3 evaluations done for COUNT v.2. 150 queries are drawn for
each of the most active users (single user setting; S) without replacement
according to their query frequency from the 500 most (H) or least (L) frequent
queries in the query log that are also contained in the partial knowledge,
respectively. The resulting mean frequency is given by freq(Q)..
Query and keyword distributions (log-log scale) of query logs and correspond-
ing databases for AOL, TAIR, GMail-L, and Drive. The queries are aggregated
overallusers.
Query log query selectivity distributions (log-log scale).
Mean query selectivity of all AOL, Pocketdata, and TAIR users, and the 100 000
least active PubMed users/instances (sorted by descending activity).

The Viterbi algorithm [Vit67].
The Baum-Welch algorithm [Wel03].
Our new attacks and the IHOP attack [OK22] evaluated on the Zipf-Zipf
distribution setting. Evaluations are done using a variable Hamming weight
and a fixed number of states =500.
Our new attacks and the IHOP attack [OK22] evaluated in the known-
distribution setting. The results represent the average recovery rate over
BOTURS. . o . vt e e

List of Tables

Major leakage attacks and our perceived risk. The target is either Keyword
query (K) or Range data (Value/Count, RV/RC) reconstruction. B is the
maximum width and k the amount of missing queries per width. A de-
notes that all possible response lengths occur (only within all widths < B
for Ag, or k missing therein for Ag ;). O shows no success on our real-world
datasets, @ denotes some success (K for high partial Knowledge > 75%, D
for Dense data, W for large Widths close to N, S for Specific data values, E
for Evenly and —E for unevenly distributed data collections), @ is severe risk
across all of our evaluated instances.
Overview of our keyword search use cases and dataset properties. #Qp, is the
size of the entire log and #Q the amount of unique queries. n is the amount
of documents and #W the amount of unique keywords.

106

16

25

List of Tables

4.3

4.4

4.5

5.1

5.2

Summary of our scientific data range query logs on the PhotoObjAll.dec
collection [SGTT07] (n = 5242134 entries with domain N = 10456, den-
sity 95.82%, and an even data distribution). #Qy, is the size of the entire log
and #Q the amount of unique queries.
Summary of our range use cases and data with n entries, domain size N,
and density 6. E and —E denote even and uneven data distributions, respec-
tively (cf. section 4.1). L
Normalized mean errors on the entire SDSS query logs. The collection is
sampled 25x uniformly at random with size n = 10* (n = 10 for APA and
ARR). . e

Summary of the evaluation setup for known-sample attacks to recover the
queriesof theithuser.
Results summary of our attacks and the IHOP attack [OK22] in the known-
sample setting with fixed leakage, highlighting the maximum and median
recovery rates (in % of correctly recovered queries). The attacks are evaluated
on the TAIR [ECW*14] and the AOL [PCT06] query logs. The adversarial

27

63

scenarios for the attacks are described in paragraph 5.4.3 and paragraph 5.4.3. 66

107

PETs
ESAs
SSE
STE
ORAM

List of Abbreviations

Privacy-Enhancing Technologies
Encrypted Search Algorithms
Searchable Symmetric Encryption
Structured Encryption

Oblivious RAM

108

