

Cryptanalysis Strikes Back A Realistic assessment of leakage attacks on Encrypted Search

Abdelkarim Kati†‡

†School of Computer Science, Mohammed VI Polytechnic University. ‡ Encrypted Systems Lab, Brown University.

January 24, 2023 at Aarhus University.

Some Slides were adapted from A.Trieber RWC'22 Talk.

Motivation

Leakage = erosion of privacy w.r.t data protection

Privacy-Enhancing Technologies (PETs)

UntrustedServer

UntrustedServer

- Structured Encryption (STE)
- Searchable Symmetric Encryption (SSE)
- Oblivious RAM (**ORAM**)

Our work

A Realistic assessment of **Leakage Attacks** on Encrypted Search

How do we model Leakage?

 The "Baseline" leakage profile for responserevealing EMMs

$$\checkmark$$
 $(L_S, L_Q, L_U) = (dsize, (qeq, rid), usize)$

The "Baseline" leakage profile for responsehiding EMMs

$$\checkmark$$
 $(L_S, L_Q, L_u) = (dsize, qeq, usize)$

- Several new constructions have better leakage profiles
 - ✓ AZL and FZL [Kamara-Moataz-Ohirimenko'18]
 - ✓ VHL and AVHL [Kamara-Moataz'19]

(Simplified)

Leakage Attacks Types

Keyword (point) queries [IKK12,CGPR15,BKM20,RPH21]

Keyword	Document IDs
'Aarhus'	2,5,11,13,20,31
'systems'	3,5,10,11,13,25
'lab'	5,11,21,27

Known-data: Adversary knows subset of \mathcal{D}

Range queries

[KKN016,LMP18,GLMP18,GLMP19,GJW19,KPT20,KPT21]

ID	Age
1	65
2	7
3	27

$$\begin{aligned}
 q &= (a, b) \\
 \mathcal{D}(q) &= \{r \in \mathcal{D} : a \le r \le b\} \\
 &= \mathbf{Recover} \, \mathcal{D}
 \end{aligned}
 \qquad \mathbf{q} = (18,39)$$

No auxiliary knowledge

Leakage Attacks against ESAs

ESAs Techniques Overview

Technique	Leakage	Query Time	
Fully Homomorphic Encryption (FHE)	• None	Linear	Considered secure but inefficient
Oblivious RAM (ORAM)	• Response Length + Volume	Sublinear	Our work Considered
Structured Encryption (STE)	Query EqualityResponse Identities + Volumes	Optimal	efficient and
Property- Preserving Encryption (PPE)	Ciphertext EqualityCiphertext Order	Optimal	Considered efficient but insecure [NKW15]

Uncertainty Of Security

Uncertainty Of Security

A Realistic Assessment of Leakage Attacks on Encrypted Search

Previous Evaluations

Usual evaluations for Keyword attacks:

1. Enron (& Apache) email data collection

2. Restrict data to 500-3000 keywords

4. Evaluate on **partial knowledge**

3. Draw 150 queries **from** data collection

→ ??? From which part of the distribution ?

High frequency

Previous Evaluations

Usual evaluations for Range attacks:

1. Subset of HCUP Data collection

2. Pick Artificial query distribution (Uniform/Zipf/...)

3. Evaluate for different amounts of queries

LEAKER Framework

• Re-Implementation of major attacks in open-source Framework

On Release: [IKK12, CGPR15, LMP18, GLMP18, GLMP19, GJW19,

BKM20,KPT20,KPT21,RPH21]

Since then: [KPT19,FMA+20,NHP+21,Sie22]

In development: [OK21,DHP21,OK22,???]

- Modular design & supports interoperability
- Easy to implement new attacks & Countermeasures
- Easy to pre-process & use new data types.

Data Sources

Evaluation Summary

[BKM20] L. Blackstone, S. Kamara, T. Moataz. Revisiting leakage abuse attacks. NDSS'20 [RPH21] R.G. Roessink, A. Peter, F. Hahn. Experimental review of the IKK query recovery attack: Assumptions, recovery rate and improvements. ACNS'21

Evaluation Summary (Keyword Search)

(subjective)

Attacks	Leakage 🛆	Success Cases 🏻 🌀	Risk 🛕
VolAn [BKM20]SelVolAn [BKM20]	Response lengthResponse volume	 High adversarial knowledge 	Low
[IKK12]Count V.2[CGPR15]DetIKK [RPH21]	• Co-occurrence	 High adversarial knowledge 	Low
SubgraphID [BKM20]SubgraphVL [BKM20]	Response identitiesResponse volumes	• Low adversarial knowledge	High

=> Suppression of identifier and volume leakage of responses necessary!

Evaluation Summary (Keyword Search)

AOL single user & low frequency

1.0
0.8
0.6
VolAn
SelVolAn
Subgraph-ID
Subgraph-VL
0.0
0.2
0.0
0.2
0.0
Partial Knowledge in %

including queries outside of partial knowledge

with repeating queries

AOL single user & high frequency

Evaluation Summary (Range Search)

(subjective)

Attacks	Leakage	Success Cases	Risk
• [GLMP18] • [GJW19]	• Response length	• None	Very low
• APA [KPT21]	Response lengthQuery equality	• Evenly distributed data	Medium
• [LMP18]	Response identities	• Dense	Medium
 GenKNNO [GLMP19] ApprValue [GLMP19] ARR [KPT20] +	Response identities	Large widthsSkewed values	Medium
• ARR [KPT20]	Response identitiesOrder	• Most cases	High

=> Research on order reconstruction + Leakage suppression for range case!

[BKM20] attacks on identifier or volume leakage work much better than previously anticipated

[IKK12,CGPR15] keyword attacks perform much worse than previously anticipated

Range attacks rarely work on our data and success highly depends on query/data distributions

[OK22] attacks recovery rate given a specific leakage profile highly depends on prior assumption over query/data

ESA cryptanalysis is very nuanced

[BKM20] L. Blackstone, S. Kamara, T. Moataz. Revisiting leakage abuse attacks. NDSS'20

[IKK12] M. S. Islam, M. Kuzu, M. Kantarcioglu. Access pattern disclosure on searchable encryption: Ramification, attack and mitigation. NDSS'12

[CGPR15] D. Cash, P. Grubbs, J. Perry, T. Ristenpart. Leakage-abuse attacks against searchable encryption. CCS'15

[OK22] S. Oya and F. Kerschbaum. IHOP: Improved Statistical Query Recovery against Searchable Symmetric Encryption through Quadratic Optimization. USENIX'22

Observations <-->

Statistical-based query recovery attacks achieve [lower] accuracy and are [not] considered a serious threat.

[OK22]

Examples:

[OK22]

- IKK: $P = argmin | |\tilde{V} P^T . \tilde{V} . P | |_2$
 - --> simulated annealing
- graphM : P = argmin $||\tilde{V} P^T \cdot \tilde{V} \cdot P||_{2}^{2} tr(CP)$
 - --> convex-concave rel.

[IKK] Islam et .al. Access pattern disclosure on searchable encryption: ramifications, attacks and mitigation. NDSS12.

[graphM] Pouliot and wright. The shadow nemesis: inference attacks on efficiently deployable, efficiently searchable encryption. CCS16.

$$\mathbf{P} = \operatorname*{arg\,min}_{\mathbf{P} \in \mathcal{P}} \sum_{i \in [n]} \sum_{j \in [m]} c_{i,j,} \cdot \mathbf{P}_{i,j}$$
 L.A.P

This very efficient, but a lot of information is wasted because of not using the off-diagonal terms.

Compute mapping for free tokens L.A.P/Freeze

After iteration Solve L.A.P

$$\Delta_{\mathsf{t}}^{\circ} = \{\mathsf{t}_1, \mathsf{t}_4\} \, \Delta_{\mathsf{t}}^{\bullet} = \{\mathsf{t}_2, \mathsf{t}_3\} \, \, \Delta_{k}^{\circ} = \{k_2, k_3, k_5\} \, \, \Delta_{k}^{\bullet} = \{k_1, k_4\}$$

Hungarian algorithm

Adversary can exploit Qeq in the dependent setting where the client's queries are correlated, even when access obfuscation defenses are applied.

[OK22]

Markov matrix (**F** real) and its stationary distribution (**f** real) of the queried keywords.

New Pending queries k_2 k_2 k_2 k_3 k_4 k_5 k_6 k_8 $k_$

PANCAKE setup.

PANCAKE query.

Markov matrix (\hat{F}) of the queried replicas by following PANCAKE protocol.

Markov Model

Step 1:

• Initializes an empty mapping

Step 2:

• Computes the stationary distribution π ,

Step 3:

- Calculate the histogram of the sequence of queries v.
 - $\circ \approx$ to the average number of visits over the M.C states)

Step 4:

- Map the closest value in π to vi, for all $i \in [t]$;
 - o the average number of visits to the i^{th} state is approximately equal to the i^{th} component of the stationary distribution π .

Step 5:

- output the mapping and the error score
 - Error: the total distance between the avg.# visits and the selected component of the stationary distribution

Step 1:

• Initializes an empty mapping

Step 2:

- Computes the Observation matrix of HMM $O=(o_{i,j})$ $i \in [m], j \in [\#I],$
 - ∘ The frequency f_j , of each unique query $j \in [\#I]$, is first calculated using query equality leakage.
 - o Set $o_{i,j}$ to $1-|\mathbf{f}_i-\pi_i|$ i.f.f $|\mathbf{f}_i-\pi_i|_1 < \epsilon$, error parameter.
 - o Normalize O, s.t the sum of each row is equal to 1.

Step 3:

• Compute transition matrix P^A and a uniform initial distribution μ to form HMM parameters $\Theta:=(P^A,O,\mu)$.

Step 4:

- (Mapping α the attacked query sequence to the state identifiers of unique queries via the equality leakage, the likelihood s of this mapping given the observation) \leftarrow Viterbi .
 - Generate a sequence of observed states that matches the set of observation states of the created HMM parameters

Step 5:

- A new map α 'translates the states α maps to actual keywords using the adversary's knowledge.
 - \circ error parameter, we set s'=1-s such that the result with the maximum likelihood will correspond to the lowest score.

Evaluation results (R.W Q-log)

Evaluation for each of 5 users on AOL

Evaluation results (Art.Distributions)

0.8

Evaluation for Zipf-Zipf Artificial distribution with fixed H-W

0.8

Evaluation for Zipf-Zipf Artificial distribution with variable H-W

Evaluation results (Art.Distributions)

Evaluation for *Erdos* Artificial Distribution.

Evaluation for *Uniform* Artificial distribution.

Evaluation for *Zipf* Artificial distribution.

January 24, 2023

Thank you for your attention

Cryptanalysis Strikes Back A Realistic assessment of leakage attacks on Encrypted Search

Abdelkarim Kati†‡

together with T. Moataz, S. Kamara and A. Treiber.

†School of Computer Science, Mohammed VI Polytechnic University. ‡ Encrypted Systems Lab, Brown University.

January 24, 2023 at Aarhus University.

Viterbi Algorithm (Uncovering Problem)

	K_1	K2	K ₃	
K_1	0.8	0.1	0.1	Otata transition
Ka	0.2	0.7	0.1	State transition probabilities
K ₃	0.1	0.3	0.6	
	\mathbf{K}_1	K2	K_3	Initial state
	0.6	0.2	0.2	probabilities
	β_1	β₂	β₃	
K_1	0.7	0	0.3	Emission
K ₂	0.1	0.9	0	probabilities
ĸ	Ω	0.2	0.8	

^{*} MAPLE: Markov Process Leakage attacks on Encrypted search (under submission)

Viterbi Algorithm (Uncovering Problem)

Input

Observation Sequence $O = (o_1, o_2, o_3, o_4, o_5, o_6)$

Viterbi

	o ₁ =β ₁	o ₂ =β ₃	o ₃ =β ₁	o ₄ =β ₃	o ₅ =β ₃	o ₆ =β ₂
\mathbf{K}_1	0.4200	0.1008	0.0564	0.0135	0.0033	0
Ka	0.200	0	0.0010	0	0	0.0006
K ₃	0	0.0336	0	0.0045	0.0022	0.0003

Accumulated probability matrix

		o ₁ =β ₁	o ₂ =β ₃	o ₃ =β ₁	o ₄ =β ₃	o ₅ =β ₃
K	1	1	1	1	1	1
K	2	1	1	1	1	3
K	3	1	3	1	3	3

 $I_6 = 2$

Backtracking matrix

Output

Observation Sequence $S^* = (K_1, K_1, K_1, K_3, K_3, K_2)$

Baum-Welch Algorithm (Estimation Problem)

Hidden Markov Model of an unstable coin

Ground truth Initial estimates

$$E = \begin{bmatrix} H & T & | & H & T \\ 0.5 & 0.5 \\ 0.1 & 0.9 \end{bmatrix} \quad \begin{vmatrix} \hat{E}_{0} = F \\ 0.5 & 0.5 \\ 0.3 & 0.7 \end{vmatrix}$$

$$T = \begin{bmatrix} F & B & | & F & B \\ 0.8 & 0.2 \\ 0.2 & 0.8 \end{bmatrix} \quad \begin{vmatrix} \hat{T}_{0} = F \\ 0.6 & 0.4 \\ 0.4 & 0.6 \end{vmatrix}$$

HMM true parameters And initial estimations

Forward probability

Backward probability

