
Evaluating Leakage Attacks Against Relational Encrypted Search
Patrick Ehrler

Technical University of Darmstadt
Darmstadt, Germany

patrickehrler@gmail.com

Abdelkarim Kati
University of Waterloo
Waterloo, ON, Canada
akati@uwaterloo.ca

Thomas Schneider
Technical University of Darmstadt

Darmstadt, Germany
schneider@encrypto.cs.tu-darmstadt.de

Amos Treiber
Technical University of Darmstadt

Darmstadt, Germany
treiber@encrypto.cs.tu-darmstadt.de

Abstract
Encrypted Search Algorithms (ESAs) are a technique to encrypt
data while the user can still search over it. ESAs can protect privacy
and ensure security of sensitive data stored on a remote storage.
Originally, ESAs were used in the context of documents that consist
of keywords. The user encrypts the documents, sends them to a
remote server and is still able to search for keywords, without
exposing information about the plaintext. The idea of ESAs has also
been applied to relational databases, where queries (similar to SQL
statements) can be privately executed on an encrypted database.
But just as traditional schemes for Keyword-ESAs, also Relational-
ESAs have the drawback of exposing some information, called
leakage. Leakage attacks have been proposed in the literature that
use this information together with auxiliary information to learn
details about the plaintext. However, these leakage attacks have
overwhelmingly been designed for and applied to Keyword-ESAs
and not Relational-ESAs.

In this work, we review the suitability of major leakage attacks
against ESAs in the relational setting by adapting them accordingly.
We perform extensive re-evaluations of the attacks on various rela-
tional datasets with different properties.

Our evaluations show that major attacks can work against Rela-
tional-ESAs in the known-data setting. However, the attack perfor-
mance differs between datasets, exploited patterns, and attacks.

CCS Concepts
• Security and privacy → Cryptanalysis and other attacks;
Management and querying of encrypted data; Privacy-preserving
protocols.

Keywords
Encrypted Search, Cryptanalysis, Leakage Attacks

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 Cloud Computing Security Workshop (CCSW ’24), October 14–18, 2024, Salt Lake
City, UT, USA, https://doi.org/10.1145/3689938.3694776.

ACM Reference Format:
Patrick Ehrler, Abdelkarim Kati, Thomas Schneider, and Amos Treiber. 2024.
Evaluating Leakage Attacks Against Relational Encrypted Search. In Pro-
ceedings of the 2024 Cloud Computing Security Workshop (CCSW ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3689938.3694776

1 Introduction
Data is often not stored locally anymore, but on remote storage.
Therefore, it is more important than ever to keep data secure
against breaches by keeping it private and inaccessible even to
cloud providers.

Encrypted Search Algorithms (ESAs). The above observation is
a natural motivation for ESAs. They encrypt a data collection such
that the data can remain encrypted on the remote storage whilst
the user is still able to search over it. The concept was originally
designed for documents that consist of keywords [31]. We refer to
the survey of Fuller et al. [11] for more information on ESAs.

Leakage and Leakage Attacks.All efficient schemes of ESAs have
the drawback of exposing some information (so called leakage) [9].
For instance, this may entail the number of documents that match
a search query.

The leakage can be used to uncover plaintext information, e.g.,
uncovering what the user was searching for. The process of using
leakage to uncover plaintext information is called a leakage at-
tack [17]. There are many attacks published in the literature, which
have been surveyed by Kamara et al. [19]. Attack success depends
on a plethora of factors, which include the type of leakage pattern
they exploit, the data they are evaluated on, the auxiliary informa-
tion the attacker has access to, and the adversary model.

In this work, we focus on known-data attacks exploiting leakage
patterns associated with passive, persistent adversaries, which is
the most common adversary model in the literature. A known-
data attack assumes that the attacker has access to a subset of the
plaintext data collection. A passive adversary can observe query
operations, but does not interact with the system. A persistent
adversary has access to the encrypted data collection and to the
transcript of all interactions between the user and the server.

Relational-ESAs. The idea of ESAs was extended to relational
databases [6, 20, 21]. Instead of searching for keywords in encrypted
documents, queries are executed on remote encrypted databases.
In this work, we focus on selection-queries with a single equality-
based condition. Such a query is equivalent to this SQL statement:

https://orcid.org/0009-0005-2494-5986
https://orcid.org/0009-0005-0528-6997
https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0002-2998-8855
https://doi.org/10.1145/3689938.3694776
https://doi.org/10.1145/3689938.3694776

SELECT ∗ FROM) WHERE 0CCA81DC4 = E0;D4 .

If executed on a database, this query returns all rows of the table)
where the value of the field 0CCA81DC4 equals E0;D4 . Just as in the
non-relational case, Relational-ESAs also leak some information.

Leakage Attacks Against Relational-ESAs. Passive, persistent
attacks against Relational-ESAs based on the Keyword-ESA attack
of Cash et al. [5] have so far been proposed by Abdelraheem et
al. [1, 2]. These attacks entail the assumption that the attacker has
full data knowledge and they were evaluated on only three datasets
(one banking and two census datasets).

Recently, Gui et al. [13] proposed two passive relational attacks
without full data knowledge. They target a preview version of the
ESA product MongoDB queryable encryption (QE) [23, 24] released
for customer feedback. The considered adversary is not persistent
but a snapshot attacker that receives a copy of the server state.
Additionally, the attacker has knowledge of an auxiliary database.
The authors use census data to evaluate their attacks.

While these specific attacks have been leveraged for certain
instances of Relational-ESAs, it remains open how to utilize the
existing plethora of leakage attacks against Keyword-ESAs [4, 5,
10, 28, 29] for attacking Relational-ESAs and to investigate which
evaluation factors influence their attack performance.

Therefore, we believe a systematic study of attack performance
in the relational case across multiple databases is necessary to form
a more complete picture for the relational case.

Our Contributions. In this work, we provide the systematic study
mentioned above in the common passive, persistent, known-data
attacker model. We investigate how major, appropriate leakage
attacks against encrypted keyword search perform when applied
to the relational case by making the following contributions:

(1) We look at major attacks against Keyword-ESAs [4, 5, 10, 28,
29], review their suitability as attacks against Relational-ESAs,
and propose adaptions to make them work in the relational
setting.

(2) We extend the open-source LEAKER framework [19], that
so far was restricted to evaluating leakage attacks against
encrypted keyword and range search on arbitrary data, to
also support Relational-ESAs, including our attack adaptions.
We will make our extensions publicly available as open-
source for future research.

(3) We identify new relational datasets for our evaluations that
entail various dataset properties and domains, including
census, medical, and voting data. These data sources are
publicly available and may function as common means to
evaluate future relational leakage attacks.

(4) We conduct a systematic re-evaluation of our adapted attacks
on our uncovered relational datasets to identify dataset prop-
erties where known-data attacks against Relational-ESAs
perform well. This includes an in-depth look into the uncov-
ered queries to determine how sensitive the attack results
are, which, so far, has not been performed yet. Our results
show that these attacks also apply to the relational setting
and we identify attack and database properties that influence
attack efficacy.

Concurrent Work. Concurrently and independently to our work,
Hoover et al. [16] propose Relational-ESA leakage attacks in the
sampled-data setting. They evaluate their attacks on one dataset. In
our work, we focus on evaluating and comparing the suitability and
performance of attacks on Keyword-ESAs used against Relational-
ESAs on a wide range of datasets in the known-data setting.

2 Related Work
(Relational) Encrypted Search Algorithms (ESAs). ESAs can
be built on different techniques [19]. They include oblivious RAM
(ORAM) [12], searchable symmetric encryption (SSE) [9], and struc-
tured encryption (STE) [7]. Usually STE is a building-block of SSE.
In this work, when we talk of ESAs we refer to ESAs built on STE
(whereby the SAP attack [28] which we consider could also be
applied to ORAM-based techniques).

Searching on encrypted data was already considered more than
20 years ago: Song, Wagner, and Perrig [31] proposed the first
explicit cryptographic scheme that allows searching on data in a
provably secure way. In [9], the now standard security notation
of adaptive security (where the adversary can choose queries to
the server adaptively) was introduced and leakage of SSE was first
identified and formalized.

Whenwe talk of ESAs, we refer to static ESAs, which only support
search operations. In contrast, dynamic ESAs also include updates.
Recently, Xu et al. [34] have shown that dynamic ESAs may even
be more susceptible to leakage attacks.

The problem of executing SQL queries over an encrypted data-
base was first considered in [14]. A more recent approach is called
SPX, proposed in [20]. SPX is an encrypted relational database
scheme that does not reveal the query response to the server
(response-hiding). An extension to SPX is called OPX [21] which
improves the efficiency and supports conjunctive queries with op-
timal time and space complexity. Both schemes are based on STE
and are asymptotically optimal in terms of query complexity (time
and space). Another scheme for Relational-ESAs was introduced
in [6] and is also based on STE. Compared to OPX it reduces the
bandwidth needed and improves the leakage for joins.

MongoDB queryable encryption (QE) [23, 24] is a commercial
application based on STE that is able to run encrypted queries
on fully randomized encrypted data. The encrypted data is never
decrypted on the server side.

Leakage Attacks. The first proposed leakage attack by Islam et
al. [17] utilizes simulated annealing to exploit leakage. Since then,
many attacks have been published that aim for different targets.
Most common are keyword-recovery attacks as in [4, 5, 10, 28, 29]
which aim to retrieve information about the underlying plaintext
of an observed encrypted keyword query. These are the attacks we
will adapt for the relational setting. We will go into more details
about these attacks in Section 4. We refer to [19] for an overview
on leakage attacks.

Leakage Attacks against Relational-ESAs.Attacks against Rela-
tional-ESAs were already proposed and evaluated, but in different
scenarios than ours.

In [1], an adapted Count attack [5] (called Relational-Count) is
proposed which requires full knowledge of the query frequency

2

distribution. In [2], two passive, persistent attacks are proposed:
The first attack focuses on uncovering only the attributes of ob-
served queries with minimal auxiliary knowledge (only meta-data
information). The second approach combines the first attack with
the Relational-Count attack of [1] to improve its performance.

Concurrently to our work, Hoover et al. [16] propose a partial
query recovery attack against SELECT operations of encrypted SQL
databases.The SELECT attack exploits equality group leakages from
co-occurrence information in the passive persistent model, where
the adversary has access to sampled-data as auxiliary information.
The adversary is also able to differentiate which columns/rows are
repeated between different queries and when a SELECT query is re-
peated. Their attacks are evaluated using one real-world dataset [8].

In our work, we evaluate all major attacks [4, 5, 10, 28, 29]
with assumptions on attacker knowledge which does not entail full
knowledge of the query frequency but a subset of the data (known-
data scenario) and use existing leakage patterns. Additionally, we
include a wide range of datasets in our evaluations.

In [13], two attacks against a preview release1 of MongoDB QE
are proposed. They are sampled-data attacks (utilizing an auxiliary
dataset) of a snapshot attacker. In one attack, the attacker has access
to a copy of the encrypted documents and a query log. In the other
attack, it has access to an operation log. The attacks use a simulated
annealing approach to uncover field values in the encrypted dataset.
In contrast, our work is in a different setting as it evaluates known-
data leakage attacks on general leakage patterns of relational STE-
based constructions by passive, persistent adversaries.

In [19], an open-source framework for leakage attack evalua-
tion on real-world data called LEAKER is presented. The Python
framework is designed to allow easy integration, evaluation, and
comparison of new attacks against ESAs, but also to work with
different data sources without requiring domain-specific knowl-
edge. So far, LEAKER [19] only supported attacks against single
keyword searches or range searches. We extend the framework to
the relational setting and use it for our evaluations.

3 Preliminaries
Notation. A set of integers {1, . . . , =} is denoted as [=], with the
corresponding power set as 2[=] . Given a sequence B of n elements,
its 8-th element is referred to as B8 . The cardinality of a set (is
denoted as |(|.

Let D be defined as a collection of tables)8 , with 8 ∈ [1, . . . , =].
A table)8 is a collection of rows A 9 (with 9 ∈ [1, . . . ,<8]), whereby
each row takes k values: A 9 = [(A 9)1, . . . , (A 9):)] (for all 9 ∈ [1, . . . ,
<8]). The 0-th attribute (or column) is defined as a sequence of the 0-
th element over all<8 rows of table)8 : [(A1)0, . . . , (A<)0], whereby
all values of one attribute have the same data type. A query consists
of a combination of a table)8 , an attribute identifier 0, and a value
E : @ = ()8 , 0, E). The query space & is a set of all possible unique
queries @ ∈ & . A query @ can also be written as an SQL statement:

SELECT ∗ FROM)8 WHERE 0 = E .
A query @ = ()8 , 0, E) can be executed on a database D, and re-
turns all rows of the table that apply to the condition: D(@) =

{A ∈)8 : A0 = E}. |D(@) | refers to the cardinality or frequency

1This release was used to collect (customer) feedback for the feature [23].

of a query, which defines the number of rows that suit the query
@. |) | defines the table cardinality of) (total number of rows).
|D(@) |/|)8 | is referred to as the selectivity of the query @. ids8 :
& → 2[<8] , ids8 (@) ↦→ 9 ∈ [<8] : 3 9 ∈ � (@) refers to the identifier
function, which maps a query @ to all row-identifiers of table)8
that suit the query. We overload notation and refer to ids@ as ids8
such that query @ selects from table)8 . Additionally, for a row A of
table)8 , we denote its identifier within)8 as ids(A). The bit length
of a row A is defined as |A |1 .
Encrypted Search. In its initially considered setting, encrypted
search is based on documents that consist of words. The user is able
to search for a keyword on an encrypted collection of documents
and receives all documents where the keyword occurs. We general-
ize this setting to relational databases. A document corresponds in
our scenario to a row of a table and is specified by an identifier of
the table and the row. We provide more details of this in Section 5.

As in [21], we call an encrypted query a token. The token is
sent to the encrypted database. The ESA computes and returns the
response rows. In our work both terms queries and tokens are used
equivalently, as we do not actually consider encryption, but the
leakage of ESAs.

Additionally, for simplicity we consider the queried table to be
public information, i.e., for a query @ = ()8 , 0, E),)8 is known by the
attacker. This is realistic because the table may be identified by the
length of the returned rows (although measures like padding could,
of course, somewhat hide this).

Leakage Patterns. Each operation of an ESA leaks information,
which composes of so called leakage patterns. In this paper, we only
consider leakage based on the query operation (so called query-
leakage) with passive, persistent adversaries. Here, we refer to the
query leakage patterns as defined in LEAKER [19] and will apply
them to the relational setting in Section 5:

• The response identity (rid) pattern leaks for each query the
identifiers of the matching rows: rid(D, @1, . . . , @C) =
(ids@1 (@1), . . . , ids@C (@C)).

• The response length (rlen) pattern leaks the number of rows
thatmatch a certain query: rlen(D, @1, . . . , @C) = (|ids@1 (@1) |,
. . . , |ids@C (@C) |). This leakage is implied by the response iden-
tity pattern and can also be derived from the co-occurrence
pattern (diagonal values; see next).

• The co-occurrence (co) pattern leaks for each pair of queries
the number of rows they match together: co(D, @1, . . . , @C) =
" ∈ {0, . . . , =}C×C , where" [8, 9] = |ids@8 (@8) ∩ ids@ 9

(@ 9) |.
• The volume (vol) pattern leaks for each query the bit length of

the resulting rows: vol(D, @1, . . . , @C) = ((|A |1)A ∈D(@1) , . . . ,
(|A |1)A ∈D(@C)).

• The query equality (qeq) pattern leaks if a pair of queries is
equal: qeq(D, @1, . . . , @C) = " ∈ {0, 1}C×C , where " [8, 9] ={

1, iff @8 = @ 9
0, else .

4 Leakage Attacks
We refer to [19] for an in-depth overview of leakage attacks and
provide the basics necessary for our work in the following.

3

Attacks on encrypted search exploit the leakage of a scheme
using some auxiliary data to recover plaintext queries (query recov-
ery attacks) and/or recover the plaintext of documents (plaintext
reconstruction attacks) [5]. Attacks can be further categorized based
on the query type, which can be either a keyword query or a range
query. We consider a setting similar to the keyword-attack setting,
as our queries are always equality based. Since this setting has
mainly been considered with query recovery attacks, we are also
concerned with query recovery in our work. The success of an
attack is measured as the fraction of successfully recovered queries
(called recovery rate).

Leakage attacks can be separated into active and passive at-
tacks [19]: An active attacker is able to interact with the user. We
consider the passive attack scenario where the attacker has knowl-
edge of a fixed set of observed queries and an auxiliary dataset.

Auxiliary Data. In addition to the leakage itself, leakage attacks
are given access to some auxiliary data (motivated by, e.g., a data
breach scenario). So-called sampled-data attacks require an auxil-
iary dataset that is statistically close to the targeted dataset. Known-
data attacks require a subset of the targeted dataset. In this work,
we are concerned with known-data attacks.

Even though some of the attacks we consider (cf. Section 4.1) are
built as sampled-data attacks, they can also be run as known-data
attacks. This means the attacker is more powerful and does not
have access to a similar dataset, but instead utilizes a subset of the
actual dataset (which is also statistically close to the full dataset).

4.1 Considered Attacks
Various query recovery attacks have been published in the literature,
but not all might be suitable for our relational setting. This includes
attacks which are based on volume leakage, which however are not
suited well for our considered relational setting (cf. Section 5.3),
because the ciphertexts of every row have the same bit length. We
will thus focus on attacks that use the response length, response
identity, or co-occurrence leakage patterns, which are suitable in
our relational setting.

We give an overview of all used attacks in Table 1. All of these
attacks were previously implemented for the keyword-only setting
in the LEAKER [19] attack evaluation framework. In the following,
we describe the relevant details of each attack. We will describe
how to adapt them in the relational setting in Section 5.

Table 1: Comparison of applicable attacks for the relational
setting. The Scoring and Refined (Ref.) Scoring attacks [10]
require additional query knowledge. Some of the attacks
can also consider frequency information (based on query
equality leakage).

Attack Original Setting Leakage
Count v2 [5] known-data rlen, co
Subgraph ID [4] known-data rid, rlen
SAP [28] sampled-data + sampled-query rlen, qeq
Scoring [10] sampled-data + known queries co
Ref. Scoring [10] sampled-data + known queries co
IHOP [29] sampled-data + sampled-query co, qeq

Count v2. The so-called Count v2 attack [5] uses response length
and co-occurrence leakage and is built as a known-data attack.
The general approach of the Count v2 attack is to reduce the set
of possible mappings between tokens and queries by estimating
cardinality bounds.

Subgraph ID. The so-called Subgraph attack [4] works with any
atomic leakage. An atomic leakage is a pattern that reveals a func-
tion for each resulting row (e.g., vol and rid) [4]. We only use the
Subgraph attack with response identity leakage (called Subgraph
ID attack). In the considered relational setting (cf. Section 5.3), the
ciphertexts of every row have the same bit length, which rules out
volume attacks. In this attack, leakage and known data are modeled
as bipartite graphs that are used to eliminate candidate keywords
by uncovering inconsistencies.

SAP.The Search and Access Pattern-Based Attack (SAP) attack [28]
is based on a Maximum Likelihood Estimation (MLE) approach.
It is built as a sampled-data and sampled-query attack, utilizing
auxiliary document and query data. It uses the number of queries
in a time interval identified via the query equality pattern to obtain
the frequency of a query (how often a query is executed). This
information and the response length leakage is exploited to optimize
a distance between observed query frequency and response length
and the corresponding metric obtained from the auxiliary data.

Scoring. The foundation of the Scoring attack [10] is a confidence
scoring function that should be maximized in the case when a token
and a query are correctly paired. It was also originally designed as
a sampled-data attack. The attack additionally requires some tokens
to be already uncovered. An improved version of the Scoring attack
is called the Refined Scoring attack. It uses an iterative refinement
strategy: The strategy is able to add previously uncovered queries
to the set of known queries, in order to recover even more queries.
This can reduce the amount of known queries needed.

IHOP. IHOP [29] formulates query recovery as a quadratic opti-
mization problem. The attack is based on the SAP attack [28] but
uses co-occurrence leakage instead of response length leakage. It is
also built as a sampled-data attack with additional frequency knowl-
edge (sampled-query). IHOP [29] uses linear solvers to iteratively
solve the overall quadratic optimization problem.

5 Attacks on Relational Encrypted Search
We describe and review Relational-ESA schemes, their leakage, and
how attacks against Keyword-ESAs can be used to attack them.

5.1 Relational ESAs
One relational ESA scheme is OPX by Kamara et al. [21]. It is based
on three algorithms. The setup algorithm initializes the encrypted
database. It takes the plaintext database D as input, then samples a
secret key , and computes the encrypted data structure based on
 and the database D. The encrypted data structure ED can then
be stored on an untrusted remote server.

To perform a query operation on OPX [21], the client first en-
crypts its query. A query can usually be represented by a query-tree
in the relational setting (e.g., each SQL query can be represented
as a tree). The token algorithm takes and the query-tree & , then
returns an encrypted representation of the query-tree) (called

4

token-tree). The user sends the token-tree to the remote server,
where the query algorithm is invoked. It computes and returns,
based on the encrypted data structure ED and the token tree) ,
the encrypted result. With the key the user is able to obtain the
plaintext result of the query (suitable rows of the table).

Another Relational-ESA schemewas introduced byCash et al. [6].
It includes several improvements to the basic structured encryption
approach, like pre-computing joins on the server. The authors intro-
duce three techniques that are called FpSj, PpSj, and HybStl. FpSj
is similar to OPX [21] and works by fully computing joins on the
server. PpSj is a technique that works by partially pre-computing
joins. HybStI is a hybrid scheme that merges the indexes of both
techniques in order to be able to answer both kinds of tokens.

Leakage. Relational-ESA schemes like OPX [21] leak data during
the setup, token, and query computation. For query-recovery at-
tacks especially the token and query leakage is relevant. Leakage
in OPX [21] is represented as a tree (just as the actual query). Each
node in the query tree corresponds to a node in the leakage tree,
whereby the leakage differs depending on the functionality of the
node. The selection-query leakage of FpSj, PpSj, and HybStI [6] is
comparable to the leakage of OPX [21]: Depending on the underly-
ing encrypted structure the query equality pattern and the response
length/co-occurrence patterns are leaked (as in OPX [21]). With
joins, PpSj [6] can only have leakage based on the individual tables.
E.g., the attacker can obtain the number of relevant rows from each
table but does not get knowledge of the response-length of the
fully-computed join. HybStI [6] is able to answer fully computed
or partially-precomputed joins, and therefore has an intermediate
join query leakage level between FpSj and PpSj.

5.2 Our Simplified Leakage
The leakage profiles of Relational-ESAs are very convoluted, which
makes it hard to adapt and leverage existing attacks.

Thus, in our attack scenario, we consider a simplified ESA scheme
that may leak the response identity, response length, or the co-
occurrence pattern. We apply attacks using one or more of these
patterns (patt1, ..., pattp). When we evaluate an attack in the rela-
tional setting, the results thus apply only to Relational-ESAs whose
leakage profile contains the patterns (patt1, ..., pattp).

Though simplified, some of these attacks also apply to the exist-
ing Relational-ESAs, which we clarify below. Other attacks (e.g.,
those using the response identity pattern) do not apply, but we
still evaluate their effectiveness to gain knowledge of attack per-
formance that is useful when designing a potential Relational-ESA
that leaks identities.

OPX. The OPX [21] construction uses standard data structure en-
cryption schemes. This means that the underlying scheme only
leaks response-identity and query equality patterns.

Our attacks are targeted towards selection queries, so we are
only concerned with the leakage for selection predicates based on
a condition (WHERE attr = value). Therefore, we only consider the
selection node leakage of the leakage tree.

For a simple query that only consists of one input table and
one selection predicate, the selection node is a leaf in the leakage
tree. This is the basic setting we consider and where our attack
evaluation applies.

When an observed query consists of multiple selection predicates
(and input tables), each predicate would correspond to one selection
node in the leakage tree that we could attack individually. In this
case, usually join nodes are present in the leakage tree (because
multiple inputs are joined). We do not consider the leakage of the
join nodes (merge tables based on conditions), as this would result
in a much more complex leakage construction. But as described
above, we can attack the individual selection leakage of the query
and consider it as a simple query which corresponds to the basic
setting. In this case, however, we have to assume that the selection
nodes are leaves. Otherwise, the leakage would not be based directly
on the input table but on the input of the node, which would again
make the leakage construction more complex. Therefore, all our
evaluations assume that attacked selection nodes are leafs in the
leakage tree. We consider modifications of our simplified scheme to
allow for attacks on intermediate selection nodes and joined tables
to be valuable future work.

Let @ be a basic query in the set of observed queries & with
only one selection and the condition att = 0 on the table) . In the
basic setting we consider, OPX [21] leaks for query @ the following
pattern [21]:

!OPX (@) = {|A |,AccP(A)}A ∈)att=a .
From this, the attacker can obtain the number of rows that suit

the predicate (response length pattern). Additionally, the access
pattern AccP in [21] is defined as if and when row A was accessed.
Thus, from the above pattern over all observed queries & , the co-
occurrence {co(@, @′)}@∈& } of a query @ ∈ & can be derived. Hence,
for the considered basic queries, attacks that utilize the response
length and/or co-occurrence patterns apply.

Partially Computed Joins andHybrid Indexing Schemes. FpSj,
PpSj, andHybStl [6] also leak the response length and co-occurrence
patterns for selection-queries. Compared to FpSj [6] and OPX [21],
where the response length and co-occurrence pattern of the fi-
nal join output is leaked, PpSj [6] (and HybStI [6], depending on
its mode) only leaks information based on the individual tables.
However, this lower join leakage of PpSj and HybStl [6] does not
matter for us, because we do not attack join leakage. It is also not
relevant for the attacker to differentiate between selections and
relation retrievals. We only consider selection leakage in our setting.
Therefore, our simplified Relational-ESA scheme also applies to the
constructions in [6].

5.3 Attack Adjustments for Relational-ESAs
We consider all attacks in a known-data setting, even if the attacks
are built as sampled-data attacks (as it is also done in [5, 19]). This
is possible because a uniformly sampled known-dataset can also be
considered as a dataset that is statistically close to the full dataset.
The corresponding adaption of an attack is simple, only the normal-
ization of possibly different sizes of the known and full database
need to be adjusted.We leave the evaluation of sampled-data attacks
for future work.

Utilized Leakage Patterns. The SAP [28] and IHOP [29] attacks
are built to use additional frequency information. This is data that
is very hard to obtain [19]. For the datasets we use, we do not
have access to frequency information and therefore we adapt these

5

attacks to run without frequency information. This also has the
advantage to have comparable results to the other attacks. For
the SAP attack [28] we only consider response length leakage,
i.e., only the cost matrix based on response length is considered
for the optimization problem. In the case of IHOP [29], only co-
occurrence leakage is used. We evaluate the remaining attacks
without modifications in data knowledge and leakage. This includes
the Subgraph ID [4], Scoring [10], and Refined Scoring [10] attacks.

Mapping Keyword Attacks to the Relational Setting. Most
attacks are built for a setting with documents which consist of
keywords (and not a relational database). As mentioned in Sec-
tion 3, instead of having documents that consist of keywords, we
define rows and queries in a manner that allows to employ keyword
leakage attacks:

Instead of keywords, we consider column values (keyword =

(attr83 , value)). Instead of data collections (a set of documents), we
consider a table, i.e., a set of rows (document = row = ((attr1, value),
..., (attr: , value))). We apply this setting to all the attacks we con-
sider. All attacks we use are listed in Table 1 on Page 4.

Restrictions. One thing to consider is that every row (document)
has the same number of queries (keywords). Furthermore, every
row (document) has exactly one keyword for each attribute from
the attribute’s space of possible values. This usually does not apply
in the case of documents and keywords. Leakage attacks that rely
on documents having a unique number of keywords, like the LEAP
[26] attack, are not suitable in our relational setting. Additionally,
we have the restriction that the ciphertexts of every row have the
same bit length, which rules out volume attacks.

6 Evaluation
Our row-query setting is very similar to the already existing imple-
mentation [19] of the document-keyword setting, which makes the
implementation and comparison of attack results easier.

6.1 Implementation
We extend the existing open-source LEAKER framework [19] to
fully support our relational attack setting. Our additions mainly in-
clude a MySQL backend that holds the original tables of the dataset
as well as pre-computed leakage information. We provide a new
interface that maps the existing keyword-document infrastructure
onto our relational setting (cf. Section 5.3). With that, modeling
leakage patterns, pre-processing and using datasets, launching and
evaluating the existing leakage attacks, and plotting the results
can be used for relational data exactly as for the already existing
keyword data.

We opened a pull request2 in the LEAKER [19] repository to
make our extensions to the framework available as open source.

6.2 Datasets
For our evaluation, we especially consider datasets that have sen-
sitive content and would be suitable to be stored in an encrypted
database. However, the datasets we use are not actually sensitive,
as we do not have access to real private data. We therefore have to
rely on datasets that are anonymized or are public information but

2https://github.com/encryptogroup/LEAKER/pull/4

could be considered sensitive in a different context (e.g., a different
country or regarding different subjects). The attacks we employ
aim to recover basic equality queries, therefore the dataset should
mostly consist of discrete values.

Our goal is to have a wide variety of datasets with different prop-
erties. Nevertheless we have the restriction to not be able to include
very large datasets (more than one million rows or much more
than 600 000 queries), because of limitations in available computing
power, memory, and evaluation time.

An overview of all datasets we consider with their properties is
given in Table 2.

The UCI Datasets. The mimic_adult [3], uci_bank [25], and uci_
census [22] datasets from the University of California Irvine (UCI)
machine learning repository have already been used for evalua-
tions of attacks against Relational-ESAs in [1, 2]. The uci_adult and
uci_census tables [3, 22] are extracted from the 1994 US Census
bureau database and consist of personal demographic data, like
age, education, and relationship status. The uci_bank table consists
of personal customer data from a Portuguese banking institution,
including details about existing loans.

TheDMVDataset.TheDepartment ofMotor Vehicle (DMV) dataset [32]
consists of real vehicle, snowmobile, and boat registrations in the
State of New York from 2022 to 2023 and has not been used to
evaluate attacks against Relational-ESAs before. We consider two
cases, one where we use all columns of the dataset and another with
a limited number of columns. We limit the number of columns to
11 in order to reduce the number of possible queries, which is done
frequently in usages of this data [35]. We also restrict it by the num-
ber of rows depending on the evaluation (100 000 or 1 000 000 rows
selected uniformly at random). This yields the respective tables we
use in our evaluations.

TheMIMIC IV Dataset. MIMIC IV [18] is a medical dataset and
was already used in the evaluations of LEAKER [19]. It contains data
from electronic health records, including procedures and diagnoses.
We choose three tables for our evaluations: The mimic_icustays
table contains data about entry and exit of patients in the inten-
sive care unit. The mimic_hcpcsevents table contains mappings
between patients and the service they took in the hospital. The
mimic_admissions table consists of data about the entry of patients
into the hospital and where they have been discharged to. Addi-
tionally information about the insurance, race, and marital status
of the patient are included.

The NC Voters Dataset. The North Carolina (NC) Voter Registra-
tion Dataset [27] consists of current data about individuals regis-
tered to vote in North Carolina and has not been used to evaluate
attacks against Relational-ESAs before. This dataset is especially
interesting as it contains data that has not been anonymized. We
utilize three different counties of varying sizes as tables.

6.3 Evaluation Setup
We assume that the attacker has access to a subset of the full dataset,
which could be extracted from a data breach or obtained by hackers
(known-data attack). For simplicity, we assume a known dataset
that is uniformly sampled in the range from 1% to 100% of the full
dataset, as is common in the literature [19].

6

https://github.com/encryptogroup/LEAKER/pull/4

Table 2: Comparison of the main datasets and tables we use in the evaluations and their properties.

Dataset Table/Names Number of Rows Number of Attributes Number of Queries
Adult [3] uci_adult 32 561 15 22 146
Bank [25] uci_bank 45 211 17 9 543
Census [22] uci_census 199 523 42 103 419

DMV [32]
dmv_100k_11cols 100 000 11 1 989
dmv_100k 100 000 20 119 202
dmv_1M_11cols 1 000 000 11 3 053

MIMIC IV [18]
mimic_icustays 73 181 5 190 358
mimic_hcpcsevents 150 771 6 228 643
mimic_admissions 431 231 11 613 769

NC Voters [27]
ncvoters_tyrrell 2 593 67 14 048
ncvoters_richmond 32 156 67 142 549
ncvoters_caldwell 59 138 67 243 450

The attacker observes several queries (tokens) and their results.
The leakage of the queries is computed and given to the attacker.
We assume that users mostly execute high-cardinality queries and
therefore it is more likely for the attacker to observe these. This
has been observed in real-world query logs [19]. If not specified
otherwise, we uniformly select 150 out of the 500 highest cardinality
queries (150/500) of the known dataset as observed queries.

The Scoring [10] and Refined Scoring [10] attacks require initially
known queries. We give the corresponding instances access to 15%
of the observed queries, i.e., 15% of the target queries are already
revealed to the attacker. When looking at the evaluations one has
to keep in mind that these attacks start with this higher prior
knowledge and can never fall below a 15% recovery rate.

We repeat each evaluation three times with a freshly sampled
known dataset. Each time, the evaluation is again repeated three
times with freshly sampled queries (called a 3x3 evaluation).

We run all experiments on an Ubuntu 22.04 virtual machine with
8 cores and 128 GB of main memory.

6.4 Overall Evaluation Results
We evaluate all attacks of Table 1 on all the datasets of Table 2. For
feasibility, we skip the resource-heavy IHOP attack [29] on datasets
with more than 100 000 queries and the Refined Scoring attack [10]
on datasets with more than 500 000 queries. Our results are shown
in Figure 1 on Pages 9-10. All plots show the percentage of queries
of the observed query set that have been uncovered (y-axis) for
different sizes of known data the attacker has knowledge of (x-axis).

General Result Pattern. Broadly speaking, the results we observe
for the relational setting are mostly similar in performance to the at-
tacks being evaluated in their original keyword setting. The Refined
Scoring attack [10] is the best performing attack, with Scoring [10]
and IHOP [29] also reaching significant query recovery (≥ 20% for
20% known-data). Of these attacks, IHOP is the only one that does
not require initially known queries. Subgraph ID [4] stays mostly
around 50% recovery and Count v2 [5] and SAP [28] only reach
significant recovery with full knowledge of the dataset.

However, we uncover some subtle and unique differences de-
pending on the data and attack. We discuss these differences in
detail below.

Results on the UCI Datasets (Figure 1 a-c). The Subgraph ID
attack [4] on the uci_bank and uci_adult datasets outperforms
all other instances with ≤ 30% known data. The attack has an
interesting behavior also seen to a lesser extent on the other data
sources: Its recovery rate decreases with more known data before
rising again at 80% known data. This could be explained by the fact
that both datasets only consist of relatively few queries (around
9 000 and 22 000 respectively), compared to uci_census (with around
103 000 queries). Therefore, low known data rates result in very few
queries known to the attacker (much less than 500 queries). Less
known queries again result in fewer possibilities of mappings and
easier finding of inconsistencies.

Apart from that, the attacks largely follow the general result
pattern, although we can observe an increased performance for low
known-data rates in the case of uci_census.

Results on the MIMIC IV Dataset (Figure 1 d-f). These results
have notable differences compared to the general result pattern:
For the mimic_hcpcsevents and mimic_icustays tables [18], the
Scoring attack [10] does not uncover new queries (only 15% initial
queries). The Refined Scoring attack [10] works better, but requires
high known-data rates (> 80% on mimic_hcpcsevents, 100% on
mimic_icustays) to uncover a substantial number of queries (∼
50%). This could be explained by the observation that both datasets
do not consist of a substantial number of queries with a unique
cardinality in their top 500 query set (mimic_hcpcsevents: ∼ 20%,
mimic_icustays: 4%).

In comparison, all attacks (except the Subgraph ID attack [4])
on the mimic_admissions table work better than on mimic_hcpc-
sevents and mimic_icustays, possibly because of the substantially
higher fraction of queries with a unique cardinality in its top 500
query set (70%).

Results on the DMV Dataset (Figure 1 g-i). Here, attack perfor-
mance largely follows the general result pattern and is very similar
across all DMV datasets [32], even though the table properties are
actually very different (cf. Table 2). However, all three datasets are
extracted from the same source, which leads to a similar query
cardinality distribution in their top 500 query set and may explain
the similarities across instances.

7

Results on the NC Voters Dataset (Figure 1 j-l). Compared to
the other datasets and the general result pattern, all NC Voters
evaluations yield worse results, especially in cases with a known
data rate of 100% (full data knowledge).

One reason for that could be the distribution of query cardinal-
ities in the NC Voters dataset. If we look at the ncvoters_tyrrell
table, we only observe a few queries with a high cardinality (only
6% have a cardinality of ≥ 1 000), which leads to a low number of
queries with a unique cardinality (∼ 4%). Therefore, the attacks
based on response length or co-occurrence leakage have difficulties
of mapping queries correctly.

6.5 A Deeper Look Into the UncoveredQueries
We evaluated the attacks on datasets which contain sensitive con-
tent.The results of our evaluations so far (cf. Section 6.4) are the frac-
tion of observed queries that can be uncovered. However, though
the data may contain sensitive content, our previous evaluations
(and all previous evaluations in the literature, which have been per-
formed in a similar manner) do not actually show whether sensitive
content is among the uncovered plaintexts. This is interesting as
it is especially crucial if an attacker is able to uncover queries that
have direct co-occurrence with a personal identity (e.g., last name
or patient id co-occurs with a specific disease). Consequently, if
only values that cannot be linked to persons are uncovered (e.g.,
diseases are uncovered but not personal identities), one may argue
that no significant sensitive information is uncovered.

Hence, in this section we evaluate how many of the uncovered
queries contain personal identifiers. To the best of our knowledge,
this approach has not been considered before.

Setup. More concretely, we look at two datasets where the at-
tacks worked well and where personal identifiers exist: The mimic_
hcpcsevents table and the ncvoters_tyrrell table. We only consider
the Refined Scoring attack [10], as it is the best performing attack
in most of our evaluations, and evaluate what fraction of uncovered
queries concern personal identifiers.

Table 3: We look at the ncvoters_tyrrell table (last_name
attribute) and the mimic_hcpcsevents table (subject_id at-
tribute). We run the Refined Scoring attack [10] on both
datasets and show the fraction of uncovered queries with
sensitive attributes which have been uncovered. The total
number of queries with the corresponding attributes in the
observed query set is shown in brackets. The values are aver-
ages over 3x3 runs.

Known-data Rate mimic_hcpcsevents ncvoters_tyrrell
1% 0.17 (40) 0.15 (11)
5% 0.17 (47) 0.11 (20)

10% 0.14 (50) 0.15 (20)
20% 0.18 (49) 0.27 (21)
40% 0.17 (49) 0.31 (15)
60% 0.26 (48) 0.59 (20)
80% 0.41 (47) 0.87 (18)

100% 0.63 (48) 1.00 (19)

Results. We present the results in Table 3. The mimic_hcpcsevents
table includes the attribute subject_id, which can be mapped (with
additional knowledge) to a personal identity. If we look at the 500
queries with the highest cardinality, then 161 queries with the
subject_id attribute appear. Our results show that the recovery rate
computed over all queries is similar to the fraction of recovered
subject_id-attribute queries.

The second dataset, we look at is the ncvoters_tyrrell table. In
this dataset we look at the sensitive attribute last_name. Overall,
the attribute appears 27 times in the set of 500 queries with the
highest cardinality. We observe that for high known-data rates
(≥ 40%), the recovery rate of last_name-attribute queries is higher
than the overall recovery rate. With full data knowledge, the attack
is able to recover all queries with the last_name attribute which it
was not able for the other attributes.

Overall, this shows that queries with sensitive attributes are
vulnerable and are part of the uncovered queries of the attacks. We
give details of additional evaluation results in Appendix A.

7 Conclusion
We conclude that existing leakage attacks against Keyword-ESAs
can be leveraged against Relational-ESAs and lead to similar eval-
uation performance. However, the same difficulties as for the non-
relational case apply for estimating the practicality of the attacks:
Successful instances require auxiliary data knowledge, which is
hard to model realistically. Furthermore, we note that these attacks
take part in the persistent adversary model that requires access to
the entire transcript between client and server.

In Table 4, we present an overview of the attack results. The
Subgraph ID [4], Scoring, and Refined Scoring attacks [10] require
a relatively low fraction of known data to uncover significant infor-
mation. However, the Scoring attacks require known queries and
the Subgraph ID attack does not apply to any existing Relational-
ESA scheme. The Count v2 [5] and SAP attack [28] only pose a
major risk when the attacker has knowledge of (nearly) all the data.
The IHOP [29] attack requires significantly less knowledge than all
other attacks to reach significant recovery.

Table 4: Comparison of the main attacks and the amount
of data they need to uncover different fractions of queries.
The table refers to the worst-case (highest recovery rate) of
the attacks with 150/500 queries of high cardinality. Cases
with the lowest known-data rate (X) are highlighted in bold
(highest vulnerability).
*The (Refined) Scoring attack [10] has a prior query knowl-
edge of 15%.

Attack X to un- X to un- X to un-
cover 20% cover 40% cover 80%

Count v2 [5] ≥ 30% ≥ 80% ∼ 100%
SubgraphID [4] ≥ 1% ≥ 80% ∼ 100%
SAP [28] ≥ 30% ∼ 100% ∼ 100%
Scoring* [10] ≥ 1% ≥ 15% ≥ 35%
Refined Scoring* [10] ≥ 1% ≥ 5% ≥ 20%
IHOP [29] ≥ 15% ≥ 55% ≥ 75%

8

Future Work. For simplicity, we only consider single-table attacks.
For future work, this could be extended to attack multiple tables.
This could include to consider leakage of joins, which might be
much more complex than just considering selection leakage. It
represents a more realistic scenario, as data is often split between
multiple tables and has to be joined.

Most of our considered attacks use a very simple selectivity esti-
mation. However, there are more advanced estimators [33] which
could help to improve the attacks against Relational-ESAs. We give
more details on our considerations for using estimator techniques,
in Appendix B.

Acknowledgments
We would like to thank Zheguang Zhao for pointers regarding
selectivity estimators.

This project received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 850990 PSOTI).
It was co-funded by the Deutsche Forschungsgemeinschaft (DFG)
within SFB 1119 CROSSING/236615297 and GRK 2050 Privacy &
Trust/251805230.

References
[1] Abdelraheem, M.A., Andersson, T., Gehrmann, C.: Searchable encrypted rela-

tional databases: Risks and countermeasures. In: Data Privacy Management,
Cryptocurrencies and Blockchain Technology: ESORICS 2017 InternationalWork-
shops. pp. 70–85. Springer (2017)

[2] Abdelraheem, M.A., Andersson, T., Gehrmann, C., Glackin, C.: Practical attacks
on relational databases protected via searchable encryption. In: International
Conference on Information Security (ISC) (2018)

[3] Becker, B., Kohavi, R.: Adult. UCI Machine Learning Repository (1996), DOI:
https://doi.org/10.24432/C5XW20

[4] Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: 27th
Annual Network and Distributed System Security Symposium. The Internet
Society (2020)

[5] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against search-
able encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 668–679. ACM (2015)

[6] Cash, D., Ng, R., Rivkin, A.: Improved structured encryption for sql databases via
hybrid indexing. In: Applied Cryptography and Network Security: 19th Interna-
tional Conference. pp. 480–510. Springer (2021)

[7] Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security (ASIACRYPT) (2010)

[8] City of Chicago: crime, taxi rides, rideshare services, and car crashes (2019)
[9] Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-

cryption: Improved definitions and efficient constructions. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2006)

[10] Damie, M., Hahn, F., Peter, A.: A highly accurate query-recovery attack against
searchable encryption using non-indexed documents. In: USENIX Security Sym-
posium (USENIX Security) (2021)

[11] Fuller, B., Varia, M., Yerukhimovich, A., Shen, E., Hamlin, A., Gadepally, V., Shay,
R., Mitchell, J.D., Cunningham, R.K.: SoK: Cryptographically protected database
search. In: IEEE Symposium on Security and Privacy (S&P) (2017)

[12] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM) 43(3) (1996)

[13] Gui, Z., Paterson, K.G., Tang, T.: Security analysis of MongoDB queryable encryp-
tion. In: 32nd USENIX Security Symposium (USENIX Security 23). pp. 7445–7462
(2023)

[14] Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in
the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data. pp. 216–227. ACM (2002)

[15] Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

[16] Hoover, A., Ng, R., Khu, D., Lim, J., Ng, D., Lim, J., Song, Y., et al.: Leakage-
abuse attacks against structured encryption for sql. In: 30th USENIX Security
Symposium (2024)

[17] Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS (2012)

[18] Johnson, Alistair, Bulgarelli, Lucas, Pollard, Tom, Horng, Steven, Celi, Leo
Anthony, Mark, Roger: MIMIC-IV. https://doi.org/10.13026/6MM1-EK67, https:
//physionet.org/content/mimiciv/2.2/

[19] Kamara, S., Kati, A., Moataz, T., Schneider, T., Treiber, A., Yonli, M.: Sok: Cryptanal-
ysis of encrypted search with leaker–a framework for leakage attack evaluation
on real-world data. In: 2022 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 90–108. IEEE (2022)

[20] Kamara, S., Moataz, T.: Sql on structurally-encrypted databases. In: Advances
in Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory
and Application of Cryptology and Information Security. pp. 149–180. Springer
(2018)

[21] Kamara, S., Moataz, T., Zdonik, S., Zhao, Z.: An optimal relational database
encryption scheme. Cryptology ePrint Archive (2020)

[22] Lane, T., Kohavi, R.: Census-Income (KDD). UCI Machine Learning Repository
(2000), DOI: https://doi.org/10.24432/C5N30T

[23] MongoDB: Mongodb announces queryable encryption with equality query
type support (2023), https://www.mongodb.com/blog/post/mongodb-announces-
queryable-encryption

[24] MongoDB: Run expressive queries on fully randomized encrypted data (2023),
https://www.mongodb.com/products/queryable-encryption

[25] Moro S., R.P., P., C.: Bank Marketing. UCI Machine Learning Repository (2012),
DOI: https://doi.org/10.24432/C5K306

[26] Ning, J., Huang, X., Poh, G.S., Yuan, J., Li, Y., Weng, J., Deng, R.H.: LEAP: Leakage-
abuse attack on efficiently deployable, efficiently searchable encryption with
partially known dataset. In: ACM SIGSAC Conference on Computer and Com-
munications Security (CCS) (2021)

[27] North Carolina State Board Of Elections: Voter registration data (2023), https:
//www.ncsbe.gov/results-data/voter-registration-data

[28] Oya, S., Kerschbaum, F.: Hiding the access pattern is not enough: Exploiting
search pattern leakage in searchable encryption. In: USENIX Security Symposium
(USENIX Security) (2021)

[29] Oya, S., Kerschbaum, F.: Ihop: Improved statistical query recovery against search-
able symmetric encryption through quadratic optimization. In: USENIX Security
Symposium (USENIX Security) (2022)

[30] Riondato, M., Akdere, M., Çetintemel, U., Zdonik, S.B., Upfal, E.:The vc-dimension
of sql queries and selectivity estimation through sampling. In: Machine Learning
and Knowledge Discovery in Databases. pp. 661–676. Springer (2011)

[31] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy (S&P) (2000)

[32] State of New York: Vehicle, snowmobile, and boat registrations (2020), https:
//catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

[33] Wang, X.,Qu, C., Wu, W., Wang, J., Zhou, Q.: Are we ready for learned cardinality
estimation? Proceedings of the VLDB Endowment 14(9), 1640–1654 (2021)

[34] Xu, L., Zheng, L., Xu, C., Yuan, X., Wang, C.: Leakage-abuse attacks against
forward and backward private searchable symmetric encryption. In: Proceedings
of the 2023 ACMSIGSACConference on Computer and Communications Security.
p. 3003–3017. ACM (2023)

[35] Yang, Z., Liang, E., Kamsetty, A., Wu, C., Duan, Y., Chen, X., Abbeel, P., Heller-
stein, J.M., Krishnan, S., Stoica, I.: Deep unsupervised cardinality estimation.
Proceedings of the VLDB Endowment 13(3), 279–292 (2019)

9

https://physionet.org/content/mimiciv/2.2/
https://physionet.org/content/mimiciv/2.2/
https://www.mongodb.com/blog/post/mongodb-announces-queryable-encryption
https://www.mongodb.com/blog/post/mongodb-announces-queryable-encryption
https://www.mongodb.com/products/queryable-encryption
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

(a) uci_adult

(b) uci_bank

(c) uci_census

(d)mimic_hcpcsevents

(e) mimic_icustays

(f) mimic_admissions

10

(g) dmv_100k

(h) dmv_100_11cols

(i) dmv_1M_11cols

(j) ncvoters_tyrrell

(k) ncvoters_richmond

(l) ncvoters_caldwell

Figure 1: Our evaluation results of all attacks from Table 1 on all datasets from Table 2. The results on tables of the same data
source mostly have similar recovery rates.

11

A Additional Evaluation Results
Larger Set of Observed Queries In previous evaluations, we
assume the attacker to observe 150 queries (from the 500 highest
cardinality queries) and their results (and compute the leakage from
it). In this section, we re-run some evaluations with 300 observed
queries which are selected independently from the 1 000 highest
cardinality queries. This might be a more realistic use-case, because
users might also execute queries which are not in the top 500.

Overall, the results in Figure 2 are very similar to the general
experiments with 150 observed queries drawn from the 500 queries
with the highest cardinality. However, we observe a slight decrease
in the recovery rate. This could be explained by the observation
of how many queries have the same cardinality: Usually we ob-
serve that only few high-cardinality queries, but many low cardinal-
ity queries exist in a dataset, therefore also many low-cardinality
queries have the same cardinality. If we consider a larger query-
space (top-1 000), then also more low-cardinality queries are part
of the observed query set.

Combined Scoring andCount v2AttackTheScoring attacks [10]
require prior knowledge of uncovered queries. The authors [10]
argue that these (few) queries could be obtained by other attacks.
The Count v2 attack [5] does not require initial uncovered queries.
On the other hand it did not perform as well as the Scoring attacks
in our evaluations in Section 6.4. We combine the Scoring and Re-
fined Scoring attacks with the Count v2 attack. This means, we first
run the Count v2 attack and use its uncovered queries as input for
the (Refined) Scoring attack. This way, we replace the additional
knowledge (in our case 15% initially uncovered queries) the Scor-
ing attacks require and replace it with the output of the Count v2
attack. We select the Count v2 attack [5] because it requires the
same leakage (co-occurrence) as the Scoring attacks [10]. We run
the experiment on the uci_bank and ncvoters_tyrrell datasets. Our
results in Figure 3 show that both the combined Scoring and com-
bined Refined Scoring attacks uncover at least as many new queries
than in the case of the basic (Refined) Scoring attack with access to
15% of uncovered queries (our baseline). On the uci_bank dataset
the combined attack even performs better than the baseline in the
cases with ≥ 40% partial knowledge. This could be explained by
the observation that the Count v2 attack [5] has a recovery rate of
around 10% on the uci_bank dataset compared to around 2% on the
ncvoters_tyrrell dataset. However, this is still less than our baseline
which has access to 15% initially uncovered queries. It seems to be
the case, that the uncovered queries of the Count v2 attack [5] are
a better starting point than randomly selected queries.

Overall, this is an interesting observation, because Refined Scor-
ing [10] is one of the best performing attacks in our evaluations.
Considering that we can omit the additional prior knowledge it can
be a suitable alternative to the IHOP attack [29] (which is resource
heavy).

Therefore, the Scoring and Refined Scoring attacks [10] also face
a threat even when an attacker does not have access to initially
uncovered queries.

Queries with Pseudo-Low Cardinality We always assumed that
the attacker is able to observe queries that have a very high cardi-
nality. We repeated some evaluations with the assumption that the
attacker is only able to select queries that have a low cardinality,

but at least a cardinality of 10 (we call it pseudo-low). We use this
lower bound, because most datasets tend to have a lot of queries
with a very low cardinality (especially 1).

We evaluate the attacks in this setting on the uci_census and
ncvoters_caldwell, and dmv_1M_11cols datasets. The result are
shown in Figure 4. Most attacks do not work at all. Only the Sub-
graph ID attack [4] is able to uncover queries. The result on the
uci_census and ncvoters_caldwell datasets can be explained by the
observation that for both datasets the query space (500 queries with
the lowest cardinality, but at least 10), only consists of queries with
a cardinality of 10 or 11. The attacks based on response length and
co-occurrence depend on differences in cardinality. Therefore they
are not able to uncover queries. On the dmv_1M_11cols datasets
also only the Subgraph ID attack [4] is able to uncover queries.
This is surprising, because the pseudo-low query space has a wider
range in this dataset (from cardinality 10 to 727). We would have
expected to be able to at least uncover some queries.

Overall, we see that most attacks do not work well with observed
queries of pseudo-low selectivity. This means, that the vulnerability
of Relational-ESAs is low when an attacker is not able to observe
queries with a high selectivity (but pseudo-low). Only attacks based
on response identity leakage really work in this setting. Response
identity leakage is a stronger assumption than response length or
co-occurrence leakage and therefore less realistic for an attacker to
obtain.

B Selectivity Estimation for Leakage Attacks
We introduce the parameter X that defines the fraction of rows of a
table that is known to the attacker (known data rate). We define #
as the full size (number of rows) of the dataset.

Response length/co-occurrence (rlen/co) values of observed queries
are based on the full dataset, rlen/co values of the known queries
only include information based on the known dataset (which is
usually smaller than the full dataset). Therefore, all the attacks use
some kind of selectivity estimation. The attacks in Section 4.1 use
two simple approaches which are very similar: The estimation E
of rlen/co can be computed by scaling the rlen/co values 2 of the
known queries to the full size of the dataset (E = 2

X
). This is equiva-

lent to computing the selectivity of the queries based on the known
dataset and use it to estimate the cardinality of the full dataset by
multiplying the selectivity with the total rows of the full dataset.
This is usually referred to as Sampling. Another approach used
by the SAP [28] and IHOP [29] attacks is to normalize both, the
values of the known queries and the values of the observed queries,
by dividing them with the table cardinality # of the known or
full dataset respectively (E = 2

X#
). Except the Count v2 [5] attack,

all the attacks we consider need to perform this operation in the
known-data setting. The Count v2 attack [5] uses a different ap-
proach involving a bound-estimate to limit the number of possible
queries.

To improve the attacks, we would need an estimator that is
trained on the partially known dataset that the attacker has access
to. Depending on the attack it would need to estimate the selectiv-
ity of single queries (response-length attacks) or pairs of queries
(co-occurrence attacks). In all cases, the estimator needs to be better
than Sampling. For most of the attacks, instead of using a response

12

(a) uci_bank (b) ncvoters_tyrrell

Figure 2: Results of the attacks with 300 observed queries selected independently from the 1000 highest cardinality queries.
The attack results are similar to the 150/500 case.

(a) uci_bank (b) ncvoters_tyrrell

Figure 3: Results of the Scoring and Refined Scoring attacks [10], where the Count v2 attack [5] is used to uncover the required
initial queries. We plot the attacks using 15% initially uncovered queries as a baseline. The combined attacks have around 15%
less recovery than their baseline. If we deduct the 15% initial recovery rate from the baseline the combined attacks always
perform at least as good as the baseline. With a higher known data rate the difference reduces. On the uci_bank dataset
the combined Scoring attack (RelationalScoringWithCount) performs even much better than its baseline with ≥ 40% partial
knowledge.

length vector/co-occurrence matrix based on the known dataset,
the estimated values would be used as inputs. We did some experi-
ments with the Naru [35] estimator in estimating point-estimates
for the Scoring attack [10]. However, this did not improve the attack
results, because Naru does not consider the uncertainty of only

having access to a subset of the full dataset. Future work could
adapt Naru to work in this setting. The Count v2 [5] attack already
uses the Hoeffding’s bounds estimation [15]. To improve the at-
tack, a suitable estimator would need to be better than Hoeffding’s
bounds [15]. We evaluated the Count v2 attack with the Riondato
estimator [30]. However, this also did not improve the attack.

13

(a) uci_census (b) ncvoters_caldwell

(c) dmv_1M_11cols

Figure 4: Results of the attacks with a search space of low cardinality (but at least 10) queries. Except the Subgraph ID attack [4],
all attacks do not work on all three datasets.

14

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Leakage Attacks
	4.1 Considered Attacks

	5 Attacks on Relational Encrypted Search
	5.1 Relational ESAs
	5.2 Our Simplified Leakage
	5.3 Attack Adjustments for Relational-ESAs

	6 Evaluation
	6.1 Implementation
	6.2 Datasets
	6.3 Evaluation Setup
	6.4 Overall Evaluation Results
	6.5 A Deeper Look Into the Uncovered Queries

	7 Conclusion
	Acknowledgments
	References
	A Additional Evaluation Results
	B Selectivity Estimation for Leakage Attacks

